Featured Research

from universities, journals, and other organizations

New Era Of Research Begins As World's First Hard X-ray Laser Achieves 'First Light'

Date:
April 23, 2009
Source:
SLAC National Accelerator Laboratory
Summary:
The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers the first-ever glimpse of high-energy or "hard" X-ray laser light produced in a laboratory.

Only 12 out of a total 33 LCLS undulator magnets were needed to create the first pulses of laser light.
Credit: Brad Plummer

The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers the first-ever glimpse of high-energy or "hard" X-ray laser light produced in a laboratory.

When fine tuning is complete, the LCLS will provide the world's brightest, shortest pulses of laser X-rays for scientific study. It will give scientists an unprecedented tool for studying and understanding the arrangement of atoms in materials such as metals, semiconductors, ceramics, polymers, catalysts, plastics, and biological molecules, with wide-ranging impact on advanced energy research and other fields.

"This milestone establishes proof-of-concept for this incredible machine, the first of its kind," said SLAC Director Persis Drell. "The LCLS team overcame unprecedented technical challenges to make this happen, and their work will enable frontier research in a host of fields. For some disciplines, this tool will be as important to the future as the microscope has been to the past."

Even in these initial stages of operation, the LCLS X-ray beam is brighter than any other human-made source of short-pulse, hard X-rays. Initial tests produced laser light with a wavelength of 1.5 Angstroms, or 0.15 nanometers—the shortest-wavelength, highest-energy X-rays ever created by any laser. To generate that light, the team had to align the electron beam with extreme precision. The beam cannot deviate from a straight line by more than about 5 micrometers per 5 meters—an astounding feat of engineering.

"This is the most difficult lightsource that has ever been turned on," said LCLS Construction Project Director John Galayda. "It's on the boundary between the impossible and possible, and within two hours of start-up these guys had it right on."

Unlike conventional lasers, which use mirrored cavities to amplify light, the LCLS is a free-electron laser, creating light using free-flying electrons in a vacuum. The LCLS uses the final third of SLAC's two-mile linear accelerator to drive electrons to high energy and through an array of "undulator" magnets that steer the electrons rapidly back and forth, generating a brilliant beam of coordinated X-rays. In last week's milestone, LCLS scientists used only 12 of an eventual 33 undulator magnets to generate the facility's first laser light.

The LCLS team is now honing the machine's performance to achieve the beam quality needed for the first scientific experiments, slated to begin in September. With its ultra-bright, ultrafast pulses, the LCLS will work much like a high-speed camera, capturing images of atoms and molecules in action. By stringing together many such images, researchers will create stop-motion movies that reveal the fundamental behavior of atoms and molecules on unprecedented timescales.

"The LCLS team saw a vision of a remarkable new tool for science that could be achieved by using the existing SLAC linear accelerator, and they delivered on that vision with remarkable speed and precision," said DOE Office of Science Acting Director Patricia Dehmer. "The science that will come from the LCLS will be as astounding and as unexpected as was the science that came from the lasers of a few decades ago. We do not yet know all that the LCLS will reveal about the world around us. But we can be sure that the new results will excite and energize the scientific communities that we serve."


Story Source:

The above story is based on materials provided by SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

SLAC National Accelerator Laboratory. "New Era Of Research Begins As World's First Hard X-ray Laser Achieves 'First Light'." ScienceDaily. ScienceDaily, 23 April 2009. <www.sciencedaily.com/releases/2009/04/090422092200.htm>.
SLAC National Accelerator Laboratory. (2009, April 23). New Era Of Research Begins As World's First Hard X-ray Laser Achieves 'First Light'. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2009/04/090422092200.htm
SLAC National Accelerator Laboratory. "New Era Of Research Begins As World's First Hard X-ray Laser Achieves 'First Light'." ScienceDaily. www.sciencedaily.com/releases/2009/04/090422092200.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins