Featured Research

from universities, journals, and other organizations

Biological Basis For The Eight-hour Workday?

Date:
April 27, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
Scientists already know that some genes are controlled by the circadian clock and are turned on only one time during each 24-hour cycle. Now, researchers have found that some genes are switched on once every 12 or 8 hours, indicating that shorter cycles of the circadian rhythm are also biologically encoded.

Time course of gene expression of 24-, 12-, and 8-hour periods.
Credit: Michael Hughes, PhD, University of Pennsylvania School of Medicine

The circadian clock coordinates physiological and behavioral processes on a 24-hour rhythm, allowing animals to anticipate changes in their environment and prepare accordingly. Scientists already know that some genes are controlled by the clock and are turned on only one time during each 24-hour cycle.

Now, researchers at the University of Pennsylvania School of Medicine and the Salk Institute for Biological Studies found that some genes are switched on once every 12 or 8 hours, indicating that shorter cycles of the circadian rhythm are also biologically encoded. Using a novel time-sampling approach in which the investigators looked at gene activity in the mouse liver every hour for 48 hours, they also found 10-fold more genes controlled by the 24-hour clock than previously reported.

This the first report where researchers have found other periodicities than the 24-hour cycle functioning in a live animal.

These findings, which appear in the April issue of PLoS Genetics, have implications for better understanding disruptions to normal circadian rhythms that contribute to a host of pathologies such as cardiovascular and metabolic disease, cancer, and aging-related disorders.

“The principal frequency, which is not a surprise, is the 24-hour cycle, and it is the most prevalent,” says senior author John Hogenesch, PhD, Associate Professor of Pharmacology in the Institute for Translational Medicine and Therapeutics at Penn. “What was a surprise to us – although we set up the experiment to see exactly this – are the 12-hour and the 8-hour cycles.

To uncover these shorter oscillations, the Hogenesch and Salk team isolated RNA from the livers of mice every hour for 48 hours. Microarray analysis showed that more than 3,000 genes were expressed on a circadian rhythm – which account for approximately 4% of all of the genes expressed in the liver. Additionally, 260 genes were expressed on a 12-hour cycle and 63 genes were expressed on an 8-hour cycle. The investigators saw similar 12-hour gene expression patterns in five other tissues.

“There is an obvious biological basis to a 12-hour rhythm,” Hogenesch says. “The 12-hour genes predicted dusk and dawn. These are two really, really stressful transitions that your body goes through and your mind goes through. Anybody who has young children realizes that they are more likely to cry around those times – and you’re more likely to cry with them.” The shift in gene expression controlled by these harmonics can help an animal prepare for the behavioral and physiological changes that accompany the shift from light to dark and back.

“We have less of a handle on the 8-hour rhythms,” he says, “but the fact that we can see them reliably means to me there is the possibility that there could be a biological basis to an 8-hour cycle.”

Parallel experiments using RNA samples from synchronized tissue culture cells uncovered only genes that cycled on a 24-hour rhythm and showed no evidence of the shorter oscillations, suggesting that some of the timing cues are systemically controlled and some are controlled by the cell itself.

Feeding appears to control one of the 12-hour gene expression peaks. Mice consume about 20% of their daily calories right after they wake at dusk, which is near one gene expression peak. When the researchers restricted feeding to a different time of day one 12-hour peak disappeared and the other became more pronounced. “We were left with the autonomously driven circadian protein transcription – the 24-hour component – which was unshifted by the feeding change,” Hogenesch says.

The high-density time sampling had an additional payoff: The team gained a sharper picture of the genes controlled by the 24-hour circadian clock. “We were able to more precisely measure the number of protein transcripts and the identity of the transcripts than we were able to with less frequent time sampling.

“The largest previously identified sets included 400 to 500 circadian-controlled genes and now we have 3,000 that are oscillating in the liver,” says Hogenesch. Using improved statistical methods also led to better accuracy. “We were able to more precisely say that, for example, the pituitary gland has 10-fold fewer oscillating protein transcripts than the liver, and cell-autonomous models have 10-fold less than that.”

Co-first authors on the paper are Michael E. Hughes of Penn and Luciano DiTacchio of the Salk Institute for Biological Sciences, La Jolla, CA. Other co-authors included Kevin R. Hayes and Julie E. Baggs of Penn, and Christopher Vollmers, S. Pulivarthy, the Salk researchers were led by Dr. Satchidananda Panda, Assistant Professor in the Regulatory Biology Laboratory and also corresponding author of the manuscript.

The study was funded by the Pennsylvania Commonwealth Health Research Formula Funds, the National Institute of Neurological Disease and Stroke, the National Institute of Mental Health, the Pew Scholars Program in Biomedical Science, and the Whitehall Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael E. Hughes, Luciano DiTacchio, Kevin R. Hayes, Christopher Vollmers, S. Pulivarthy, Julie E. Baggs, Satchidananda Panda, John B. Hogenesch. Harmonics of Circadian Gene Transcription in Mammals. PLoS Genetics, 2009; 5 (4): e1000442 DOI: 10.1371/journal.pgen.1000442

Cite This Page:

University of Pennsylvania School of Medicine. "Biological Basis For The Eight-hour Workday?." ScienceDaily. ScienceDaily, 27 April 2009. <www.sciencedaily.com/releases/2009/04/090423132952.htm>.
University of Pennsylvania School of Medicine. (2009, April 27). Biological Basis For The Eight-hour Workday?. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/04/090423132952.htm
University of Pennsylvania School of Medicine. "Biological Basis For The Eight-hour Workday?." ScienceDaily. www.sciencedaily.com/releases/2009/04/090423132952.htm (accessed July 30, 2014).

Share This




More Mind & Brain News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) — If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) — An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins