Featured Research

from universities, journals, and other organizations

Flu Pandemic Drugs: Using Small Stockpile Of Secondary Antiviral Drugs Could Extend Effectiveness

Date:
May 6, 2009
Source:
Public Library of Science
Summary:
In a global influenza pandemic, small stockpiles of a secondary flu medication -- if used early in local outbreaks -- could extend the effectiveness of primary drug stockpiles, according to new research.

In a global influenza pandemic, small stockpiles of a secondary flu medication – if used early in local outbreaks – could extend the effectiveness of primary drug stockpiles, according to research made available April 30 ahead of publication in PLoS Medicine.

Related Articles


Many countries are investing in large stockpiles of a single drug, oseltamivir (Tamiflu). But influenza viruses can become resistant to antiviral drugs, and the widespread use of a single drug is likely to increase the risk that a resistant strain will emerge. If such a strain were to spread widely, the effectiveness of antiviral drugs in treating infected patients, as well as their ability to slow the spread of a pandemic, would be greatly reduced.

Using a mathematical model to represent the global spread of pandemic influenza, an international team of researchers led by Joseph Wu of the University of Hong Kong, and including collaborators in the UK and the US, found that treating as few as only the first 1% of the population in a local epidemic with a secondary drug rather than with oseltamivir, could substantially delay the development of resistance to oseltamivir. This reduction in resistance was predicted to benefit not only local populations, but also those in distant parts of the world where the pandemic would subsequently spread through air travel.

In the context of the currently emerging swine flu, the secondary drug could be zanamivir (Relenza), the only other approved drug to which the new H1N1 strain has been found to be susceptible.

This strategy is predicted to be effective because it delays use of the primary stockpiled drug until a certain proportion of the local population (about 1.5% according to the model) has been infected with virus that remains susceptible to the primary drug. With drug-sensitive virus in the majority as people recover from infection and develop immunity, only a minority of further infections are likely to be resistant to the primary drug.

Technically, such a delay could be achieved by postponing the launch of any antiviral intervention. However, because even a short delay would mean denying antiviral drugs to people who would benefit from them, the researchers instead propose the deployment of a small stockpile of a secondary antiviral during the early phase of the local epidemic.

The model, prepared before the current swine flu crisis, considered two possible strategies, "early combination chemotherapy" (treatment with two drugs together while both are available, assuming that clinical trials show such a combination to be safe for patients) and "sequential multi-drug chemotherapy" (treatment with the secondary drug until its stockpile is exhausted, then treatment with the primary drug). While either strategy could be effective in principle, only the sequential strategy would be practical in responding to the currently emerging H1N1 swine flu, because the safety of combining zanamivir with oseltamivir (for combination therapy) is not established.

After simulating the impact of these strategies in a single population, the researchers then introduced international travel data into their model to investigate whether these two strategies could limit the development of antiviral resistance at a global scale. This analysis predicted that, provided the population that was the main source of resistant strains used one of the strategies, both strategies in distant, subsequently affected populations would be able to reduce the consequences of resistance, even if some intermediate populations failed to control resistance.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph T. Wu et al. Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy. PLoS Medicine, (in press)

Cite This Page:

Public Library of Science. "Flu Pandemic Drugs: Using Small Stockpile Of Secondary Antiviral Drugs Could Extend Effectiveness." ScienceDaily. ScienceDaily, 6 May 2009. <www.sciencedaily.com/releases/2009/04/090430144718.htm>.
Public Library of Science. (2009, May 6). Flu Pandemic Drugs: Using Small Stockpile Of Secondary Antiviral Drugs Could Extend Effectiveness. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/04/090430144718.htm
Public Library of Science. "Flu Pandemic Drugs: Using Small Stockpile Of Secondary Antiviral Drugs Could Extend Effectiveness." ScienceDaily. www.sciencedaily.com/releases/2009/04/090430144718.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins