Featured Research

from universities, journals, and other organizations

Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence

Date:
May 7, 2009
Source:
Aston University
Summary:
Pioneering mathematical engineers have discovered for the first time a rigid structure which exists within the center of turbulence, leading to hope that its chaotic movement could be controlled in the future. Everyone from Formula One drivers experiencing drag, through to airplane passengers suffering a bumpy flight, will have experienced clear-air turbulence, the mixing of high- and low-speed air in the atmosphere.

Engineers have found a rigid structure that exists within the center of turbulence, suggesting that its chaotic movement could be controlled in the future.
Credit: iStockphoto/Marlene DeGrood

Pioneering mathematical engineers have discovered for the first time a rigid structure which exists within the centre of turbulence, leading to hope that its chaotic movement could be controlled in the future.

Dr Sotos Generalis from Aston University in Birmingham, UK and Dr Tomoaki Itano from Kansai University in Osaka, Japan, believe their discovery of the Hairpin Vortex Solution could revolutionise our understanding of turbulence and our ability to control it.

This rigid, set structure, named after its hairpin like shape was found within Plane Couette flow. This is a prototype of turbulent shear flow, where turbulence is created in fluid flow between the space of two opposite moving planar fluid boundaries, when high- and low-speed fluids collide.

Everyone from Formula One drivers experiencing drag, through to aeroplane passengers suffering a bumpy flight, will have experienced clear-air turbulence, the mixing of high- and low-speed air in the atmosphere.

This newly foundturbulent state is constituted by a number of elements found in a coherent flow structure and has been described by the researchteam as a"tapestry of knotted vortices."

While structures, known as wall structures have been found on the ‘edge’ of turbulence, an elusive middle or wake structure has never been discovered, until now.

Dr Generalis believes that finding a regimented structure within the very heart of Couette flow could prove invaluable to controlling turbulence and the effects of turbulence between two moving boundaries, in the future. This could include working machinery parts, medical treatment involving blood flow, and turbulence in air, sea and road travel.

“Ten years ago scientists believed turbulence was in a ‘world’ of its own, until we began to find ‘wall structures’ on its side. We believed a middle or wake structure might exist, and now we can prove there is regimented structure at the very centre of turbulence. This new discovery paves the way for the ‘marriage’ between wake and wall structures in shear flow turbulence and provides a unique picture of the Couette flow turbulent eddies only observed but never understood before.

The team’s findings of this missing central link have been published in Physical Review Letters and come after nearly five years of research, created by thousands of computer generated shear flow models. The result was obtained by replicating the exposure of two opposite plates to hot and cold conditions, moving from a static to dynamic position. The research team are now aiming to find if similar structures exist within other cases of turbulent fluid flow.

“The hairpins expose an all new ‘view’ of the transition to turbulence and it is our aim to ‘unify’this idea discovered in Couette flow, into other areas of shear flow in general,” added Dr Generalis.


Story Source:

The above story is based on materials provided by Aston University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tomoaki Itano and Sotos C. Generalis. Hairpin Vortex Solution in Planar Couette Flow: A Tapestry of Knotted Vortices. Physical Review Letters, 2009; 102 (11): 114501 DOI: 10.1103/PhysRevLett.102.114501

Cite This Page:

Aston University. "Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence." ScienceDaily. ScienceDaily, 7 May 2009. <www.sciencedaily.com/releases/2009/05/090505061947.htm>.
Aston University. (2009, May 7). Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2009/05/090505061947.htm
Aston University. "Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence." ScienceDaily. www.sciencedaily.com/releases/2009/05/090505061947.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins