Featured Research

from universities, journals, and other organizations

Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence

Date:
May 7, 2009
Source:
Aston University
Summary:
Pioneering mathematical engineers have discovered for the first time a rigid structure which exists within the center of turbulence, leading to hope that its chaotic movement could be controlled in the future. Everyone from Formula One drivers experiencing drag, through to airplane passengers suffering a bumpy flight, will have experienced clear-air turbulence, the mixing of high- and low-speed air in the atmosphere.

Engineers have found a rigid structure that exists within the center of turbulence, suggesting that its chaotic movement could be controlled in the future.
Credit: iStockphoto/Marlene DeGrood

Pioneering mathematical engineers have discovered for the first time a rigid structure which exists within the centre of turbulence, leading to hope that its chaotic movement could be controlled in the future.

Dr Sotos Generalis from Aston University in Birmingham, UK and Dr Tomoaki Itano from Kansai University in Osaka, Japan, believe their discovery of the Hairpin Vortex Solution could revolutionise our understanding of turbulence and our ability to control it.

This rigid, set structure, named after its hairpin like shape was found within Plane Couette flow. This is a prototype of turbulent shear flow, where turbulence is created in fluid flow between the space of two opposite moving planar fluid boundaries, when high- and low-speed fluids collide.

Everyone from Formula One drivers experiencing drag, through to aeroplane passengers suffering a bumpy flight, will have experienced clear-air turbulence, the mixing of high- and low-speed air in the atmosphere.

This newly foundturbulent state is constituted by a number of elements found in a coherent flow structure and has been described by the researchteam as a"tapestry of knotted vortices."

While structures, known as wall structures have been found on the ‘edge’ of turbulence, an elusive middle or wake structure has never been discovered, until now.

Dr Generalis believes that finding a regimented structure within the very heart of Couette flow could prove invaluable to controlling turbulence and the effects of turbulence between two moving boundaries, in the future. This could include working machinery parts, medical treatment involving blood flow, and turbulence in air, sea and road travel.

“Ten years ago scientists believed turbulence was in a ‘world’ of its own, until we began to find ‘wall structures’ on its side. We believed a middle or wake structure might exist, and now we can prove there is regimented structure at the very centre of turbulence. This new discovery paves the way for the ‘marriage’ between wake and wall structures in shear flow turbulence and provides a unique picture of the Couette flow turbulent eddies only observed but never understood before.

The team’s findings of this missing central link have been published in Physical Review Letters and come after nearly five years of research, created by thousands of computer generated shear flow models. The result was obtained by replicating the exposure of two opposite plates to hot and cold conditions, moving from a static to dynamic position. The research team are now aiming to find if similar structures exist within other cases of turbulent fluid flow.

“The hairpins expose an all new ‘view’ of the transition to turbulence and it is our aim to ‘unify’this idea discovered in Couette flow, into other areas of shear flow in general,” added Dr Generalis.


Story Source:

The above story is based on materials provided by Aston University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tomoaki Itano and Sotos C. Generalis. Hairpin Vortex Solution in Planar Couette Flow: A Tapestry of Knotted Vortices. Physical Review Letters, 2009; 102 (11): 114501 DOI: 10.1103/PhysRevLett.102.114501

Cite This Page:

Aston University. "Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence." ScienceDaily. ScienceDaily, 7 May 2009. <www.sciencedaily.com/releases/2009/05/090505061947.htm>.
Aston University. (2009, May 7). Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/05/090505061947.htm
Aston University. "Way To Control Chaos? Rigid Structure Discovered In Center Of Air Turbulence." ScienceDaily. www.sciencedaily.com/releases/2009/05/090505061947.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins