Featured Research

from universities, journals, and other organizations

Gene May 'Bypass' Disease-linked Mitochondrial Defects

Date:
May 12, 2009
Source:
Cell Press
Summary:
By lending them a gene normally reserved for other classes of animals, researchers have shown they can rescue flies from their Parkinson's-like symptoms, including movement defects and excess free radicals produced in power-generating cellular components called mitochondria. The gene swap also protects healthy flies' mitochondria, and to a large extent the flies themselves, from the damaging effects of cyanide and other toxins.

By lending them a gene normally reserved for other classes of animals, researchers have shown they can rescue flies from their Parkinson's-like symptoms, including movement defects and excess free radicals produced in power-generating cellular components called mitochondria. The gene swap also protects healthy flies' mitochondria, and to a large extent the flies themselves, from the damaging effects of cyanide and other toxins, the team reports in the May issue of Cell Metabolism.

Related Articles


The key gene (single-subunit alternative oxidase or AOX) in essence acts as a bypass for blockages in the so-called oxidative phosphorylation (OXPHOS) cytochrome chain in mitochondria. Howard Jacobs, who led the study at the University of Tampere in Finland, likens that chain to a series of waterfalls in a hydroelectric power station. Only, in the case of mitochondria, it is electrons that flow to release energy that is captured in molecular form.

"This is the first whole organism test for the idea that you can take a gene that encodes a single polypeptide and bypass OXPHOS where it is blocked," said Jacobs, emphasizing that OXPHOS includes dozens of components and hundreds of proteins. "You may lose power from one [molecular] 'turbine,' but power from the others can be restored. With a single peptide, you can bypass two-thirds of the system. That's the beauty of the idea."

Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders, the researchers said. Therefore, there's a chance that the strategy might also prove beneficial in mammals, including humans, which like arthropods have also lost the AOX gene over the course of evolution. (Arthropods are represented by insects, spiders, and crabs.)

On the other hand, most plants, animals, and fungi do possess an alternative mitochondrial respiratory chain, which can bypass the OXPHOS system under specific physiological conditions. In plants, AOX is thought to be essential for maintaining energy balance under daylight conditions. In fungi, AOX has been implicated in the control of longevity and resistance to oxidative stress. In many animals, too, including annelid worms, mollusks, and urochordates—an underwater filter-feeding sister group to vertebrates— AOX is present and is believed to provide resistance to oxidative stress.

In a previous study, Jacobs and his colleagues tested the idea that AOX might bypass the consequences of OXPHOS inhibition in human cells. They introduced the gene into human cells by inserting DNA taken from the urochordate Ciona intestinalis. Those studies found that the protein encoded by the Ciona AOX gene made its way to mitochondria, where it conferred cyanide-resistant respiration and protected against metabolic acidosis, oxidative stress, and cell death when cells were treated with OXPHOS inhibitors such as antimycin or cyanide.

Now, they've shown that the same holds true in a living animal. Importantly, ubiquitous Ciona AOX activity had no apparent ill effects for the flies. Quite the contrary, mitochondria taken from AOX-expressing flies showed significant resistance to cyanide, and the flies partially resisted both cyanide and antimycin. AOX also rescued the movement defect and excess production of reactive oxygen species by mitochondria in flies with a mutant version of a gene known as dj-1b, which is the fly equivalent to the human Parkinson's disease gene DJ1.

The findings led the researchers to conclude that "AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders." The next step is to test whether the findings in flies will also hold true in mammals, Jacobs said. His hope is that the AOX gene might someday be delivered to humans via a suitable gene therapy, although he admits that goal assumes many things will fall into place.

"OXPHOS dysfunction is not just a problem in some rare genetic disorders or in degenerative diseases," he said. It's an issue in a very large number of pathologies—and a major cause of tissue damage after heart attack and stroke.

So, why don't we have this gene in the first place, one might ask?

Jacobs said he isn't entirely sure, but he suspects the gene renders energy production by mitochondria less efficient under normal circumstances, which isn't ideal for running fast to catch prey or avoid predators. But in today's world, he said, as people live longer and longer, it might be better to avoid the consequences of a stroke than to run a marathon.

The researchers include Daniel J.M. Fernandez-Ayala, University of Tampere, Tampere, Finland, Universidad Pablo Olavide, Seville, Spain; Alberto Sanz, University of Tampere, Tampere, Finland; Suvi Vartiainen, University of Tampere, Tampere, Finland; Kia K. Kemppainen, University of Tampere, Tampere, Finland; Marek Babusiak, University of Tampere, Tampere, Finland; Eero Mustalahti, University of Tampere, Tampere, Finland; Rodolfo Costa, University of Padova, Padova, Italy; Tea Tuomela, University of Tampere, Tampere, Finland; Massimo Zeviani, National Institute of Neurology, Milano, Italy; Jongkyeong Chung, Korea Advanced Institute of Science and Technology, Taejon, Korea; Kevin M.C. O'Dell, University of Glasgow, Glasgow, UK; Pierre Rustin, INSERM U676, Hopital Robert Debre´ and Universite´ Paris, Faculte´ de Medecine Denis Diderot, Paris, France; and Howard T. Jacobs, University of Tampere, Tampere, Finland, University of Glasgow, Glasgow, UK.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Gene May 'Bypass' Disease-linked Mitochondrial Defects." ScienceDaily. ScienceDaily, 12 May 2009. <www.sciencedaily.com/releases/2009/05/090505124745.htm>.
Cell Press. (2009, May 12). Gene May 'Bypass' Disease-linked Mitochondrial Defects. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2009/05/090505124745.htm
Cell Press. "Gene May 'Bypass' Disease-linked Mitochondrial Defects." ScienceDaily. www.sciencedaily.com/releases/2009/05/090505124745.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins