Featured Research

from universities, journals, and other organizations

New Way Of Reading Light With Help Locate Earth-like Planets Around Other Stars

Date:
May 12, 2009
Source:
Optical Society of America
Summary:
A new way of reading light will sharpen the view of planets around other stars. Researchers have created an "astro-comb" to help astronomers detect lighter planets, more like Earth, around distant stars.

Artist's concept of an Earth-like extrasolar planet.
Credit: European Southern Observatory

Thanks to the ability of astronomers to detect the presence of extrasolar planets orbiting distant stars, scientists today are able to examine hundreds of solar systems. Now researchers at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. have created an "astro-comb" to help astronomers detect lighter planets, more like Earth, around distant stars.

Related Articles


The Harvard group will present their findings at the 2009 Conference on Lasers and Electro Optics/International Quantum Electronics Conference (CLEO/IQEC), which takes place May 31 to June 5 at the Baltimore Convention Center.

In most cases, extrasolar planets can't be seen directly—the glare of the nearby star is too great—but their influence can be discerned through spectroscopy, which analyzes the energy spectrum of the light coming from the star. Not only does spectroscopy reveal the identity of the atoms in the star (each element emits light at a certain characteristic frequency), it can also tell researchers how fast the star is moving away or toward Earth, courtesy of the Doppler effect, which occurs whenever a source of waves is itself in motion. By recording the change in the frequency of the waves coming from or bouncing off of an object, scientists can deduce the velocity of the object.

This process is used to judge the speed of automobiles, storm systems, fastballs, and stars. How can it be used to deduce the presence of a planet? Though the planet might weigh millions of times less than the star, the star will be jerked around a tiny amount owing to the gravity interaction between star and planet. This jerking motion causes the star to move toward or away from Earth slightly in a way that depends on the planet's mass and its nearness to the star. The better the spectroscopy used in this whole process, the better will be the identification of the planet in the first place and the better will be the determination of planetary properties.

Right now standard spectroscopy techniques can determine star movements to within a few meters per second (m/sec). In tests, the Harvard researchers are now able to calculate star velocity shifts of less than 1 m/sec, allowing them to more accurately pinpoint the planet's location.

Smithsonian researcher David Phillips says that he and his colleagues expect to reach a velocity resolution of 60 cm/sec, and maybe even 1 cm/sec, which when applied to the activities of large telescopes presently under construction, would open new possibilities in astronomy and astrophysics, including simpler detection of more Earth-like planets.

With this new approach, Harvard astronomers achieve their great improvement using a frequency comb as the basis for the astro-comb. A special laser system is used to emit light not at a single energy but a series of energies (or frequencies), evenly spaced across a wide range of values. A plot of these narrowly-confined energy components would look like the teeth of a comb, hence the name frequency comb. The energy of these comb-like laser pulses is known so well that they can be used to calibrate the energy of light coming in from the distant star. In effect, the frequency comb approach sharpens the spectroscopy process. The resultant astro-comb should enable a further expansion of extrasolar planetary detection.

The astro-comb method has been tried out on a medium-sized telescope in Arizona and will soon be installed on the much larger William Herschel Telescope, which resides on a mountaintop in the Canary Islands.

Presentation CMII1, "Femtosecond Laser Frequency Comb for Precision Astrophysical Spectroscopy," Chih-Hao Li et al., June 1.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "New Way Of Reading Light With Help Locate Earth-like Planets Around Other Stars." ScienceDaily. ScienceDaily, 12 May 2009. <www.sciencedaily.com/releases/2009/05/090507164356.htm>.
Optical Society of America. (2009, May 12). New Way Of Reading Light With Help Locate Earth-like Planets Around Other Stars. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/05/090507164356.htm
Optical Society of America. "New Way Of Reading Light With Help Locate Earth-like Planets Around Other Stars." ScienceDaily. www.sciencedaily.com/releases/2009/05/090507164356.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com
Lunar Mission One Could Send Your Hair to The Moon

Lunar Mission One Could Send Your Hair to The Moon

Buzz60 (Nov. 19, 2014) A British-led venture called Lunar Mission One plans to send a module to the moon with keepsakes from Earth. Vanessa Freeman (@VanessaFreeTV) tells you how to get your photos and DNA onboard. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins