Featured Research

from universities, journals, and other organizations

New EEG Trace Interpretation Method Predicts Neurological Recovery Of Cardiac Arrest Patients

Date:
May 14, 2009
Source:
Technical Research Centre of Finland (VTT)
Summary:
Scientists have developed an innovative method for the verification of brain damage following cardiac arrest. Up until now, the use of electroencephalography (EEG) in the monitoring of cardiac patients has been limited due to interpretation difficulties.

Research Scientist from VTT Technical Research Centre of Finland will publicly defend his doctoral thesis presenting methods for analysing human biosignals on 15 May 2009, including innovative methods for the verification of brain damage following cardiac arrest. Up until now, the use of electroencephalography (EEG) in the monitoring of cardiac patients has been limited due to interpretation difficulties.

Related Articles


A study conducted by a multi-disciplinary research team showed that variables derived from EEG traces can be used to predict neurologica recovery even within the first 24 hours following cardiac arrest.

The researchers derived variables from the EEG trace which simplified the interpretation process. The long-term goal of the team is to develop methods that allow continuous monitoring of neurological recovery at hospitals. This would allow the health care personnel to promptly respond to changes in the patient's brain status.

If blood circulation stops, the tissue in the patient's body soon begins to suffer from reduced oxygen delivery. Brain cells are particularly sensitive to oxygen deprivation, which explains why even successfully resuscitated patients often sustain neurological damage. In its mildest form this is manifested as transient memory or movement disturbances; in the most serious cases, they can cause permanent unconsciousness.

Basically, an electroencephalogram (EEG) records the electrical activity of the brain in the same way as an electrocardiogram (ECG) records heart activity. Interpreting EEG traces is more difficult, however, since unlike the electrical activity of a regularly beating heart, the electrical activity of the brain consists of irregular impulses generated by billions of brain cells. While the applicability of EEG in predicting neurological recovery has long been known, difficulties in interpreting the recordings have limited the routine use of EEG in patient monitoring. Interpretation almost invariably requires consulting a specialist, which may cause a delay in treatment.


Story Source:

The above story is based on materials provided by Technical Research Centre of Finland (VTT). Note: Materials may be edited for content and length.


Cite This Page:

Technical Research Centre of Finland (VTT). "New EEG Trace Interpretation Method Predicts Neurological Recovery Of Cardiac Arrest Patients." ScienceDaily. ScienceDaily, 14 May 2009. <www.sciencedaily.com/releases/2009/05/090511090951.htm>.
Technical Research Centre of Finland (VTT). (2009, May 14). New EEG Trace Interpretation Method Predicts Neurological Recovery Of Cardiac Arrest Patients. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/05/090511090951.htm
Technical Research Centre of Finland (VTT). "New EEG Trace Interpretation Method Predicts Neurological Recovery Of Cardiac Arrest Patients." ScienceDaily. www.sciencedaily.com/releases/2009/05/090511090951.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins