Featured Research

from universities, journals, and other organizations

New Method For Producing Transparent Conductors Developed

Date:
May 14, 2009
Source:
University of California - Los Angeles
Summary:
Researchers have outlined a new method for producing a graphene -- carbon nanotube (G-CNT) hybrid, which is a high performance transparent conductor. Placing both graphite oxide and carbon nanotubes in a hydrazine solution produces not only graphene, but a hybrid layer of graphene and carbon nanotubes. G-CNTs have the potential to provide the building blocks of tomorrow's optical electronics.

Researchers at UCLA have developed a new method for producing a hybrid graphene–carbon nanotube, or G-CNT, for potential use as a transparent conductor in solar cells and consumer electronic devices. These G-CNTs could provide a cheaper and much more flexible alternative to materials currently used in these and similar applications.

Yang Yang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a member of UCLA's California NanoSystems Institute (CNSI), and Richard Kaner, a UCLA professor of chemistry and biochemistry and a CNSI member, outline their new processing method in research published May 13 in Nano Letters.

Transparent conductors are an integral part of many electronic devices, including flat-panel televisions, plasma displays and touch panels, as well as solar cells. The current gold standard for transparent conductors is indium tin oxide (ITO), which has several limitations. ITO is expensive, both because of its production costs and a relative scarcity of indium, and it is rigid and fragile.

The G-CNT hybrid, the researchers say, provides an ideal high-performance alternative to ITO in electronics with moving parts. Graphene is an excellent electrical conductor, and carbon nanotubes are good candidates for transparent conductors because they provide conduction of electricity using very little material. Yang and Kaner's new single-step method for combining the two is easy, inexpensive, scalable and compatible with flexible applications. G-CNTs produced this way already provide comparable performance to current ITOs used in flexible applications.

The new method builds on Yang and Kaner's previous research, published online in November 2009, which introduced a method for producing graphene, a single layer of carbon atoms, by soaking graphite oxide in a hydrazine solution. The researchers have now found that placing both graphite oxide and carbon nanotubes in a hydrazine solution produces not only graphene but a hybrid layer of graphene and carbon nanotubes.

"To our knowledge this is the first report of dispersing CNTs in anhydrous hydrazine," Yang said. "This is important because our method does not require the use of surfactants, which have traditionally been used in these solution processes and can degrade intrinsic electronic and mechanical properties."

G-CNTs are also ideal candidates for use as electrodes in polymer solar cells, one of Yang's main research projects. One of the benefits of polymer, or plastic, solar cells is that plastic is flexible. But until an alternative to ITOs, which lose efficiency upon flexing, can be found, this potential cannot be exploited. G-CNTs retain efficiency when flexed and also are compatible with plastics. Flexible solar cells could be used in a variety of materials, including the drapes of homes.

"The potential of this material (G-CNT) is not limited to improvements in the physical arrangements of the components," said Vincent Tung, a doctoral student working jointly in Yang's and Kaner's labs and the first author of the study. "With further work, G-CNTs have the potential to provide the building blocks of tomorrow's optical electronics."

This research was partially supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "New Method For Producing Transparent Conductors Developed." ScienceDaily. ScienceDaily, 14 May 2009. <www.sciencedaily.com/releases/2009/05/090513182610.htm>.
University of California - Los Angeles. (2009, May 14). New Method For Producing Transparent Conductors Developed. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/05/090513182610.htm
University of California - Los Angeles. "New Method For Producing Transparent Conductors Developed." ScienceDaily. www.sciencedaily.com/releases/2009/05/090513182610.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins