Featured Research

from universities, journals, and other organizations

Nanotechnology: Self-assembly Of Building Blocks Of DNA Can Now Be Easily Controlled

Date:
May 15, 2009
Source:
Netherlands Organization for Scientific Research
Summary:
Nature has long perfected the construction of nanomachines. Now researchers have brought the construction of artificial supramolecular structures a step closer. They have managed to carefully control the self-assembly of guanosine, one of the building blocks of our DNA.

Nature has long perfected the construction of nanomachines, but David González and his fellow researchers from Eindhoven University of Technology and Utrecht University under the leadership of Spinoza Award winner Bert Meijer, have brought the construction of artificial supramolecular structures a step closer. The researchers managed to carefully control the self-assembly of guanosine, one of the building blocks of DNA.

The natural world is a shining example when it comes to the self-assembly of molecules. However, it has not disclosed all of its secrets yet. Controlling the shape and structure of self-assembled systems continues to be a stumbling block for scientists. Yet such structures, in which the different molecules cooperate with each other, can have unrivaled characteristics. Self-assembly could provide the way forward for the future mass production of nanomaterials, nanodrugs and nanoelectronics.

Control

A quadruplex of four DNA strands is an example of such a self-assembling structure. Guanosine molecules bind together to form such a G-quadruplex. The researchers managed to influence the formation of G-quadruplexes, using Coulombic interactions. They produced structures with 8, 12, 16, or even 24 guanosine molecules.

During the formation of G-quadruplexes, positively charged alkali metal ions are incorporated in the interior of the structure. Negatively charged anions, however, fall on the outside of the structure and are therefore exposed to the surrounding medium. Coulomb's law describes the forces that two electrical charges exert on each other. According to this law, that force depends on the distance between the negatively and positively charged ions and on the stabilizing characteristics of the solution in which the self-assembly takes place. The negatively charged ions on the outside of the structure are of course exposed to this solution, as a result of which the solution determines the stability of the structure to a large extent.

By varying the two different factors, distance and solution, the researchers could regulate the formation of the G-quadruplexes. For example, they could build structures with different numbers of molecules. A structure with exactly 24 guanosine molecules had not previously been artificially constructed. This new perspective therefore provides opportunities for the regulation of self-assembling structures.

The research was performed by the Institute for Complex Molecular Structures at Eindhoven University of Technology in cooperation with Utrecht University. Part of the research was financed by the NWO/Spinoza Award of Bert Meyer.


Story Source:

The above story is based on materials provided by Netherlands Organization for Scientific Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. González-Rodríguez et al. G-quadruplex self-assembly regulated by Coulombic interactions. Nature Chemistry, 2009; 1 (2): 151 DOI: 10.1038/nchem.177

Cite This Page:

Netherlands Organization for Scientific Research. "Nanotechnology: Self-assembly Of Building Blocks Of DNA Can Now Be Easily Controlled." ScienceDaily. ScienceDaily, 15 May 2009. <www.sciencedaily.com/releases/2009/05/090514084122.htm>.
Netherlands Organization for Scientific Research. (2009, May 15). Nanotechnology: Self-assembly Of Building Blocks Of DNA Can Now Be Easily Controlled. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/05/090514084122.htm
Netherlands Organization for Scientific Research. "Nanotechnology: Self-assembly Of Building Blocks Of DNA Can Now Be Easily Controlled." ScienceDaily. www.sciencedaily.com/releases/2009/05/090514084122.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) — Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins