Featured Research

from universities, journals, and other organizations

Key Mechanism In Pathogenesis Of Osteoporosis Unraveled

Date:
May 20, 2009
Source:
Helmholtz Association of German Research Centres
Summary:
Osteoporosis, or bone loss, is a disease that is most common in the elderly population, affecting women more often than men. Until now, it was not clear exactly how the disease develops. Researchers have now elucidated a molecular mechanism which regulates the equilibrium between bone formation and bone resorption. They hope these findings will lead to new therapies for this bone disease.

Osteoporosis, or bone loss, is a disease that is most common in the elderly population, affecting women more often than men. Until now, it was not clear exactly how the disease develops. Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now elucidated a molecular mechanism which regulates the equilibrium between bone formation and bone resorption. Dr. Jeske J. Smink, Dr. Valérie Bégay, and Professor Achim Leutz were able to show that two different forms of a gene switch – a short isoform and a long isoform – determine this process.

Related Articles


The MDC researchers hope these findings will lead to new therapies for this bone disease. 

In osteoporosis, excessive bone resorption occurs. The bones lose their density and are therefore prone to breakage. Even minor falls can lead to serious bone fractures. The interplay between two cell types determines bone density: bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). The equilibrium between these two cell types is strictly regulated to prevent the formation of either too much or too little bone.

LAP and LIP maintain the balance

Dr. Smink, Dr. Bégay, and Professor Leutz have now elucidated a complicated mechanism which maintains the equilibrium between bone formation and bone resorption. Here, the gene switch C/EBPbeta plays a major role. It exists in different forms, differing in length and number of building blocks. LAP is the term researchers use to denote the full-length isoform of C/EBPbeta, and LIP is the term for the short isoform.

LAP activates another gene switch (MafB) which suppresses the formation of bone resorbing osteoclasts. In contrast, LIP, suppresses this gene switch and thus enhances the proliferation and activity of the osteoclasts. As a result, the osteoclasts resorb more bone substance than is built by the osteoblasts. The researchers suspect that imbalance in the ratio between LAP and LIP plays a role in osteoporosis.

The activity of a signaling molecule – mTOR – determines which of the two isoforms LAP and LIP is formed. The abbreviation mTOR stands for mammalian Target of Rapamycin. The drug rapamycin inhibits mTOR and thus suppresses the formation of bone resorbing osteoclasts. Unfortunately, rapamycin has severe side-effects on the immune system. "In the future, it may be possible to develop new drugs that regulate the activity of mTOR and, thus, remedy the disturbance in osteoclast function," Professor Leutz said.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Smink et al. Transcription factor C/EBPβ isoform ratio regulates osteoclastogenesis through MafB. The EMBO Journal, 2009; DOI: 10.1038/emboj.2009.127

Cite This Page:

Helmholtz Association of German Research Centres. "Key Mechanism In Pathogenesis Of Osteoporosis Unraveled." ScienceDaily. ScienceDaily, 20 May 2009. <www.sciencedaily.com/releases/2009/05/090514125156.htm>.
Helmholtz Association of German Research Centres. (2009, May 20). Key Mechanism In Pathogenesis Of Osteoporosis Unraveled. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2009/05/090514125156.htm
Helmholtz Association of German Research Centres. "Key Mechanism In Pathogenesis Of Osteoporosis Unraveled." ScienceDaily. www.sciencedaily.com/releases/2009/05/090514125156.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) — A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) — More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) — The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins