Featured Research

from universities, journals, and other organizations

Researchers Gain Ground In Efforts To Fight Parasitic Worm Infections

Date:
May 27, 2009
Source:
UT Southwestern Medical Center
Summary:
New findings are accelerating efforts to eradicate worm infections that afflict a third of the world's population.

New findings by researchers UT Southwestern Medical Center are accelerating efforts to eradicate worm infections that afflict a third of the world’s population.

The new findings, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, demonstrate that a biochemical system that controls development and reproduction of Caenorhabditis elegans, a common research worm, also provides the same function in several parasitic nematodes, including hookworm.

In these parasitic organisms, the activating molecule, called dafachronic acid, sends the necessary signals for the worms to mature from the stage in which they infect a host to the stage in which they start feeding on the host, which is what makes the host sick. In 2006 UT Southwestern scientists led by Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and senior author of the new study in PNAS, had made the discovery in C elegans, a nematode about the size of a pinhead.

In the new study, the UT Southwestern researchers treated hookworm parasites pharmacologically at the infective larval stage with dafachronic acid, causing them to pass into the “feeding” larval stage outside a host, where they had no food supply and died. Treatment of other infectious species had similar effects.

“We essentially coaxed them to mature before a food source — the host — is available,” Dr. Mangelsdorf said.

Many infectious nematode larvae live in the soil, often in areas where proper sanitation is lacking. According to the World Health Organization, parasitic nematodes infect about 2 billion people worldwide and severely sicken some 300 million, at least 50 percent of whom are school-age children.

The results point to a promising therapeutic target for the infectious nematodes, said Dr. Mangelsdorf, an investigator with the Howard Hughes Medical Institute at UT Southwestern.

“What keeps these parasites infectious is the lack of production of dafachronic acid,” he said. “Once they get inside the host, however, something switches them on to begin making this compound. We can interrupt the worm’s life cycle just by giving it this compound when it’s in the infectious state, before it enters a host.”

The nature of that switch is still under investigation. It may be that the parasite itself somehow senses it is inside the host and begins making the compound, or the parasite could receive a signal from the host to begin production, Dr. Mangelsdorf said. There also is the possibility that the parasite receives the dafachronic acid, or its precursor building blocks, from the host, he said.

Whatever the source of dafachronic acid, the researchers are confident that the compound is worth pursuing as a possible therapeutic target. In the study, the researchers present additional details about the nature of different forms of dafachronic acid and how they function in specific nematodes.

Dr. Mangelsdorf said the next step in the research is to screen large libraries of chemicals to search for compounds that behave like dafachronic acid and that could possibly be developed into pesticides that could be spread in high-infection areas.

The research study is Dr. Mangelsdorf’s inaugural publication in PNAS as a member of the National Academy of Sciences. He was elected to the organization in 2008.

Other UT Southwestern researchers involved in the study were lead author and pharmacology graduate student Zhu Wang; former graduate student Daniel Motola; Dr. Kamalesh Sharma, research scientist in internal medicine; Dr. Richard Auchus, professor of internal medicine; and Dr. Steven Kliewer, professor of molecular biology and pharmacology. Researchers from the Van Andel Research Institute, Argonne National Laboratory, George Washington University Medical Center and the University of Pennsylvania also participated.

The research was funded by the Howard Hughes Medical Institute, the National Institutes of Health, the Welch Foundation, and the Jay and Betty Van Andel Foundation.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Researchers Gain Ground In Efforts To Fight Parasitic Worm Infections." ScienceDaily. ScienceDaily, 27 May 2009. <www.sciencedaily.com/releases/2009/05/090526140736.htm>.
UT Southwestern Medical Center. (2009, May 27). Researchers Gain Ground In Efforts To Fight Parasitic Worm Infections. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/05/090526140736.htm
UT Southwestern Medical Center. "Researchers Gain Ground In Efforts To Fight Parasitic Worm Infections." ScienceDaily. www.sciencedaily.com/releases/2009/05/090526140736.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins