Featured Research

from universities, journals, and other organizations

Lower Levels Of Key Protein Influence Tumor Growth In Mice

Date:
June 5, 2009
Source:
Stanford University Medical Center
Summary:
Tumors need a healthy supply of blood to grow and spread. Researchers have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

Tumors need a healthy supply of blood to grow and spread. Researchers at the Stanford University School of Medicine have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

Related Articles


"It appears to be acting as a tumor suppressor by negatively controlling blood vessel formation," said cancer biologist Amato Giaccia, PhD, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology. He and his colleagues are hopeful that targeting the downstream molecules activated when PHD2 levels are low may be an effective treatment for a variety of human cancers.

Giaccia is the senior author of the research, which will be published in the June 2 issue of the journal Cancer Cell. He is also a member of Stanford's Cancer Center.

The finding was particularly surprising because PHD2 was already known to play a less-direct role in blood vessel formation: that of destabilizing another important cancer-associated protein, HIF-1. HIF-1, which stimulates blood vessel development, is induced by the low oxygen levels found in many solid tumors. Although the HIF-1 molecule is rarely modified in human cancers, its levels are often elevated as compared to normal tissue. Giaccia and his colleagues wondered if the higher levels of HIF-1 could be explained by decreases in the level of PHD2.

The researchers measured PHD2 levels in several human tumor samples, including breast and colon cancers, and compared them with surrounding tissue. They found that, in many cancers, the tumors did have lower-than-normal levels of PHD2. They then inhibited the expression of PHD2 in a variety of human cancer cells in the lab, transplanted these cells into mice with compromised immune systems and examined the tumors that resulted. Those arising from cells in which PHD2 expression had been blocked grew more quickly and were more highly vascularized than the unmodified control cells.

Surprisingly, however, these effects of PHD2 inhibition were evident even in cells engineered not to express HIF-1. "Nobody expected this," said Giaccia. "It's always been thought that the major role of PHD2 was in regulating HIF-1 activity. But now we've learned that it seems to control tumor growth through blood vessel formation in a variety of different cell types on its own."

Upon further investigation, the researchers learned that blocking PHD2 expression increases the levels of two other important proteins involved in vessel formation: IL-8 and angiogenin. The researchers believe that blocking the activity of these proteins may be a good way to stunt tumor growth. "Prior to this study," said Giaccia, "it was unclear which of the many proteins involved in vessel growth, or angiogenesis, should be targeted. But now we know they play a predominant role in tumor growth."

He and his colleagues are planning to continue their studies in laboratory mice engineered to develop breast cancer. They will investigate whether a version of the mice lacking PHD2 expression develops more aggressive tumors, and whether blocking IL-8 or angiogenin slows tumor growth.

In addition to Giaccia, other Stanford researchers involved in the work include postdoctoral scholar Denise Chan, PhD; graduate student Tiara Kawahara; and associate professor of dermatology Howard Chang, MD, PhD. The study was funded by a Silicon Valley Community Fellowship, the National Cancer Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Lower Levels Of Key Protein Influence Tumor Growth In Mice." ScienceDaily. ScienceDaily, 5 June 2009. <www.sciencedaily.com/releases/2009/06/090601121701.htm>.
Stanford University Medical Center. (2009, June 5). Lower Levels Of Key Protein Influence Tumor Growth In Mice. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2009/06/090601121701.htm
Stanford University Medical Center. "Lower Levels Of Key Protein Influence Tumor Growth In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/06/090601121701.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins