Featured Research

from universities, journals, and other organizations

Lower Levels Of Key Protein Influence Tumor Growth In Mice

Date:
June 5, 2009
Source:
Stanford University Medical Center
Summary:
Tumors need a healthy supply of blood to grow and spread. Researchers have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

Tumors need a healthy supply of blood to grow and spread. Researchers at the Stanford University School of Medicine have identified a molecule that regulates blood vessel growth that is often found at less-than-normal levels in human tumors. Blocking the expression of the molecule, called PHD2, allows human cancer cells to grow more quickly when implanted into mice and increases the number of blood vessels feeding the tumor.

Related Articles


"It appears to be acting as a tumor suppressor by negatively controlling blood vessel formation," said cancer biologist Amato Giaccia, PhD, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology. He and his colleagues are hopeful that targeting the downstream molecules activated when PHD2 levels are low may be an effective treatment for a variety of human cancers.

Giaccia is the senior author of the research, which will be published in the June 2 issue of the journal Cancer Cell. He is also a member of Stanford's Cancer Center.

The finding was particularly surprising because PHD2 was already known to play a less-direct role in blood vessel formation: that of destabilizing another important cancer-associated protein, HIF-1. HIF-1, which stimulates blood vessel development, is induced by the low oxygen levels found in many solid tumors. Although the HIF-1 molecule is rarely modified in human cancers, its levels are often elevated as compared to normal tissue. Giaccia and his colleagues wondered if the higher levels of HIF-1 could be explained by decreases in the level of PHD2.

The researchers measured PHD2 levels in several human tumor samples, including breast and colon cancers, and compared them with surrounding tissue. They found that, in many cancers, the tumors did have lower-than-normal levels of PHD2. They then inhibited the expression of PHD2 in a variety of human cancer cells in the lab, transplanted these cells into mice with compromised immune systems and examined the tumors that resulted. Those arising from cells in which PHD2 expression had been blocked grew more quickly and were more highly vascularized than the unmodified control cells.

Surprisingly, however, these effects of PHD2 inhibition were evident even in cells engineered not to express HIF-1. "Nobody expected this," said Giaccia. "It's always been thought that the major role of PHD2 was in regulating HIF-1 activity. But now we've learned that it seems to control tumor growth through blood vessel formation in a variety of different cell types on its own."

Upon further investigation, the researchers learned that blocking PHD2 expression increases the levels of two other important proteins involved in vessel formation: IL-8 and angiogenin. The researchers believe that blocking the activity of these proteins may be a good way to stunt tumor growth. "Prior to this study," said Giaccia, "it was unclear which of the many proteins involved in vessel growth, or angiogenesis, should be targeted. But now we know they play a predominant role in tumor growth."

He and his colleagues are planning to continue their studies in laboratory mice engineered to develop breast cancer. They will investigate whether a version of the mice lacking PHD2 expression develops more aggressive tumors, and whether blocking IL-8 or angiogenin slows tumor growth.

In addition to Giaccia, other Stanford researchers involved in the work include postdoctoral scholar Denise Chan, PhD; graduate student Tiara Kawahara; and associate professor of dermatology Howard Chang, MD, PhD. The study was funded by a Silicon Valley Community Fellowship, the National Cancer Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Lower Levels Of Key Protein Influence Tumor Growth In Mice." ScienceDaily. ScienceDaily, 5 June 2009. <www.sciencedaily.com/releases/2009/06/090601121701.htm>.
Stanford University Medical Center. (2009, June 5). Lower Levels Of Key Protein Influence Tumor Growth In Mice. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2009/06/090601121701.htm
Stanford University Medical Center. "Lower Levels Of Key Protein Influence Tumor Growth In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/06/090601121701.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins