Featured Research

from universities, journals, and other organizations

Drug's Epilepsy-prevention Effect May Be Widely Applicable

Date:
June 5, 2009
Source:
Washington University School of Medicine
Summary:
A drug with potential to prevent epilepsy caused by a genetic condition may also help prevent more common forms of epilepsy caused by brain injury.

A drug with potential to prevent epilepsy caused by a genetic condition may also help prevent more common forms of epilepsy caused by brain injury, according to researchers at Washington University School of Medicine in St. Louis.

Scientists found that the FDA-approved drug rapamycin blocks brain changes believed to cause seizures in rats. In a paper last year, the same group showed that rapamycin prevents brain changes in mice triggered by one of the most common genetic causes of epilepsy, tuberous sclerosis (TS).

"We hope to shift the focus from stopping seizures to preventing the brain abnormalities that cause seizures in the first place, and our results in the animal models so far have been encouraging," says senior author Michael Wong, M.D., Ph.D.

One percent of the population has epilepsy, which can result from genetic mutations, brain injuries and environmental insults. According to Wong, one-third of that group does not respond well to current anti-seizure medications.

"Researchers have traditionally tested potential epilepsy drugs on animals that were already having seizures," Wong says. "We may be able to improve our success rate by stepping back a little and trying to find a treatment that can halt the disease process prior to the start of seizures."

In earlier studies of TS, Wong and others showed that proteins involved in TS overactivate mTOR (mammalian target of rapamycin), a powerful regulatory protein. Wong speculated that mTOR might influence proteins involved in communication between brain cells, which could explain why TS causes seizures.

To test the theory, he gave rapamycin to mice with a TS gene mutation. The drug binds to mTOR, reducing its ability to activate other genes and proteins. Mice that received the drug were seizure-free and lived longer.

For the new study, Ling-Hui Zeng, Ph.D., a postdoctoral fellow, studied an animal model of epilepsy created by giving rats a drug known as kainate. Exposure to the drug initially causes a prolonged seizure. A few days later, the rats begin having spontaneous seizures. Research has previously shown that kainate causes brain cell death and the creation of new brain cells, and that some surviving brain cells grow multiple new branches, a phenomenon called mossy fiber sprouting. Scientists have speculated that this new and erratic growth of nerve cell branches may help promote the continuous chaotic nerve cell firing that takes place during seizures.

Zeng began her studies by showing that kainate causes an increase in a marker for mTOR activity during the initial seizure; this increase returned as rats began to develop spontaneous seizures days later and suggested that rapamycin might help prevent brain changes that underlie seizures.

When Zeng gave the rats rapamycin prior to kainate, the rats still had the initial seizure, but brain cell death, new brain cells and mossy fiber sprouting all decreased, and the later spontaneous seizures were also significantly reduced. Rats that received rapamycin after the initial seizure caused by kainate still lost and gained brain cells, but they had less mossy fiber sprouting and experienced fewer subsequent seizures.

"The fact that rapamycin had beneficial effects even after the first seizure is particularly exciting, because it suggests that if similar phenomena occur in the human brain, treating patients with mTOR inhibitors after a brain injury might reduce the chances of developing epilepsy," says Wong. "This may be particularly important for the surge of veterans returning with traumatic brain injuries from Iraq and Afghanistan."

Rapamycin is currently being evaluated in clinical trials as a treatment for the brain tumors caused by TS. Wong believes the new paper will add impetus for trials to test rapamycin and other mTOR inhibitors as epilepsy prevention drugs.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zeng et al. The Mammalian Target of Rapamycin Signaling Pathway Mediates Epileptogenesis in a Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2009; 29 (21): 6964 DOI: 10.1523/JNEUROSCI.0066-09.2009

Cite This Page:

Washington University School of Medicine. "Drug's Epilepsy-prevention Effect May Be Widely Applicable." ScienceDaily. ScienceDaily, 5 June 2009. <www.sciencedaily.com/releases/2009/06/090601182914.htm>.
Washington University School of Medicine. (2009, June 5). Drug's Epilepsy-prevention Effect May Be Widely Applicable. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/06/090601182914.htm
Washington University School of Medicine. "Drug's Epilepsy-prevention Effect May Be Widely Applicable." ScienceDaily. www.sciencedaily.com/releases/2009/06/090601182914.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins