Featured Research

from universities, journals, and other organizations

Recruitment Of Reproductive Features Into Other Cell Types May Underlie Extended Lifespan In Animals

Date:
June 8, 2009
Source:
Massachusetts General Hospital
Summary:
Researchers have found that certain genetic mutations known to extend the lifespan of the C. elegans roundworm induce "mortal" somatic cells to express some of the genes that allow the "immortality" of reproductive germline cells.

In the sense that organisms existing today are connected through a chain of life – through their parents, grandparents and other ancestors – almost a billion years back to the first animals of the pre-Cambrian era, an animal's reproductive cells can be considered to be immortal. These germline cells generate their offspring's somatic cells – other cells involved in all aspects of growth, metabolism and behavior, which have a set lifespan – and new germline cells that continue on, generation after generation.

Now in a dramatic finding, researchers from the Massachusetts General Hospital (MGH) Department of Molecular Biology have found that certain genetic mutations known to extend the lifespan of the C. elegans roundworm induce 'mortal' somatic cells to express some of the genes that allow the 'immortality' of reproductive germline cells. Their report will appear in the journal Nature and is receiving advance online release.

"C. elegans mutants with extreme longevity accomplish this feat, in part, by adopting genetic programs normally restricted to the germline into somatic cells," says Sean Curran, PhD, of MGH Molecular Biology, the study's lead author. "We know that germline cells are more stable than somatic cells – they live longer and are more resistant to stresses that damage other cells – and understanding the molecular pathways involved in that stability may someday allow us to devise therapies protective against age-related decline in other tissues."

Curran is a research fellow in the laboratory of MGH investigator Gary Ruvkun, PhD, whose work focuses on the development, longevity and metabolism of C. elegans, a tiny worm broadly used as a model for studying basic biological systems. Ruvkun and other researchers discovered that simple mutations in genetic pathways conserved throughout evolution can double or triple the lifespan of C. elegans, and that similar mutations in the corresponding pathways also dramatically extend mammalian lifespan.

Longevity-associated mutations have been shown to lead to enhanced immune response – including increased control of gene expression through RNA interference (RNAi) – in somatic cells. Since it is known that RNAi is among the mechanisms underlying germline cells' enhanced resistance to pathogens and other stresses, the researchers examined whether the reactivation of germline genetic programs was involved in the extended lifespan of C. elegans mutants.

A series of experiments demonstrated that worms with increased longevity induced by mutations in the insulin-like signaling pathway did exhibit somatic cell expression of genes usually active only in germline cells. The mutant worms also were protected from stresses that damaged the DNA of non-mutant worms. The researchers also found that inactivating germline-expressed genes in the mutant worms eliminated the increased lifespan and that longevity-associated mutations in two genes from a different metabolic pathway – one involved with detoxification and stress response – also increased the expression of germline markers.

"The idea that somatic cells can reacquire genetic pathways usually restricted to germline cells is fascinating, and since germline protection is seen across species, the activity of these genes may play a role in controlling mammalian lifespan," says Ruvkun, senior author of the Nature paper. "Understanding the mechanisms involved in this transformation could help us develop new ways to repair and even regenerate key cells and tissues." A professor of Genetics at Harvard Medical School, Ruvkun was a co-recipient of the 2008 Lasker Award for Basic Medical Research for his role in discovering that tiny molecules of RNA can control the activity of critical genes

Co-authors of the Nature paper are Xiaoyun Wu, PhD, and Christian Riedel, PhD, MGH Molecular Biology. The study was supported by grants from the National Institutes of Health, the National Institute on Aging, the European Molecular Biology Organization and the Human Frontier Science Program.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Recruitment Of Reproductive Features Into Other Cell Types May Underlie Extended Lifespan In Animals." ScienceDaily. ScienceDaily, 8 June 2009. <www.sciencedaily.com/releases/2009/06/090607153254.htm>.
Massachusetts General Hospital. (2009, June 8). Recruitment Of Reproductive Features Into Other Cell Types May Underlie Extended Lifespan In Animals. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/06/090607153254.htm
Massachusetts General Hospital. "Recruitment Of Reproductive Features Into Other Cell Types May Underlie Extended Lifespan In Animals." ScienceDaily. www.sciencedaily.com/releases/2009/06/090607153254.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins