Featured Research

from universities, journals, and other organizations

How A Common Genetic Mutation Makes Cancer Radiation Resistant

Date:
June 14, 2009
Source:
Washington University in St. Louis
Summary:
Many cancerous tumors possess a genetic mutation that disables a tumor suppressor called PTEN. Now researchers have shown why inactivation of PTEN allows tumors to resist radiation therapy.

Many cancerous tumors possess a genetic mutation that disables a tumor suppressor called PTEN. Now researchers at Washington University School of Medicine in St. Louis have shown why inactivation of PTEN allows tumors to resist radiation therapy.

The PTEN gene produces a protein found in almost all tissues in the body. This protein acts as a tumor suppressor by preventing cells from growing and dividing too rapidly. Mutations in PTEN are frequently found in prostate cancer and endometrial cancer, melanoma and certain aggressive brain tumors.

Tumors with PTEN mutations are often resistant to radiation therapy, and Tej K. Pandita, Ph.D., a researcher with the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital, and his colleagues have been trying to find out why. That information could enable researchers to develop drugs that overcome that resistance and increase the effectiveness of radiation treatments.

In an article to be published July 15, 2009, in the journal Cell Cycle and now available online, they demonstrate that PTEN-deficient cells have defective checkpoints. As cells grow and divide, they pass through several phases. Checkpoints operate during each phase and assess whether a cell is healthy enough to continue growing and dividing. If not - for example, if there is damage to genetic material resulting from radiation treatments — signals from checkpoints should tell the cell to wait until repairs are made or should induce the cell to die.

The finding that checkpoints are affected in PTEN-deficient cells is contrary to some previous research, which had suggested instead that cells with PTEN mutations had defective DNA repair mechanisms. But Pandita showed that DNA repair is independent of PTEN function in tumor cells grown in the laboratory. That indicated that defective DNA repair is not the cause of the unstable genomes frequently seen in PTEN-deficient tumor cells and not the explanation for radiation resistance in these tumors.

"The defective checkpoints contribute to radioresistance," says Pandita, associate professor of radiation oncology and of genetics. "When a cell gets damaged by radiation, normally checkpoints will make it stop growing to repair the damage. If the checkpoints are working but the cell has a defective DNA repair system, the cell will be radiosensitive. But if the checkpoints don't operate, the cell can bypass DNA repair and continue to grow and divide. Then the cells are radioresistant."

The results indicate that to increase radiation sensitivity in tumors with PTEN mutations it will be necessary to develop drugs that correct for the faulty checkpoint processes, Pandita says. Work continues in the laboratory to further unravel the details of the checkpoint system and its role in radiation therapy resistance.

Funding from National Institutes of Health supported this research.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gupta A, Yang Q, Pandita RK, Hunt CR, Xiang T, Misri S, Zeng S, Pagan J. Jeffrey J, Puc J, Kumar R, Feng Z, Powell SN, Bhat A, Yaguchi T, Wadhwa R, Kaul SC, Parsons R, Khanna KK, Pandita TK. Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA repair. Cell Cycle, 2009 July 15;14(8):1-13

Cite This Page:

Washington University in St. Louis. "How A Common Genetic Mutation Makes Cancer Radiation Resistant." ScienceDaily. ScienceDaily, 14 June 2009. <www.sciencedaily.com/releases/2009/06/090610091349.htm>.
Washington University in St. Louis. (2009, June 14). How A Common Genetic Mutation Makes Cancer Radiation Resistant. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/06/090610091349.htm
Washington University in St. Louis. "How A Common Genetic Mutation Makes Cancer Radiation Resistant." ScienceDaily. www.sciencedaily.com/releases/2009/06/090610091349.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins