Featured Research

from universities, journals, and other organizations

Peeling Stickers May Lead To Stretchable Electronics; New Model Enables Precise Design Of Damage-resistant Materials

Date:
June 29, 2009
Source:
Massachusetts Institute of Technology
Summary:
A study of stickers peeling from windows could lead to a new way to precisely control the fabrication of stretchable electronics, according to researchers.

MIT mathematician Pedro Reis demonstrates the delamination that occurs when a surface is compressed: The tape detaches from the surface and forms blisters of uniform size and spacing.
Credit: Photo by Donna Coveney

A study of stickers peeling from windows could lead to a new way to precisely control the fabrication of stretchable electronics, according to a team of researchers including one at MIT.

Related Articles


Stretchable electronics, which would enable electronic devices embedded into clothing, surgical gloves, electronic paper or other flexible materials, have proven difficult to engineer because the electrical wiring tends to be damaged as the material twists.

A study published in the online edition of the Proceedings of the National Academy of Sciences the week of June 15 offers a new approach to designing such circuits.

The research team did not have stretchable electronics in mind when they started, but launched the project as an analysis of the wrinkling and delamination of stickers. The small blisters that appear in stickers attached to car windows are a common example of such delamination.

"It's something that's around you all the time — but if you look at it a different way you can see something new," says Pedro Reis, applied math instructor at MIT and senior author of the PNAS paper.

Reis collaborated on the study with Dominic Vella, Jose Bico, Arezki Boudaoud and Benoit Roman of the French National Centre for Scientific Research.

Delamination commonly occurs due to different rates of heat-induced expansion between a thin film and the surface to which it is attached. Common examples are the blisters formed in stickers attached to a window, when exposed to sunlight.

Alternatively, compression of the surface can also lead to delamination. As the surface is compressed, the film bends with it until it reaches a certain energy threshold, then pops away from the surface, forming small blisters.

The researchers performed well controlled experiments to stretch and compress surfaces with thin films attached to them, and measured the dimensions of resulting blisters. From their experimental data, the team developed a theory to explain the formation, size and evolution of the blisters.

They found that blister size depends on the elasticity of the film and the substrate and the strength of adhesion between them. The team's model allows them to predict the size of the blisters that will form under specific conditions.

Though delamination is usually viewed as something to be avoided, the researchers realized that by intentionally creating delaminated surfaces, they could design devices that allow wires attached to a surface to move with the material without breaking. If the wires are already partially separated from the material, they won't break under stress from twisting and stretching of the substrate.

Other researchers have tried to create stretchable electronics by blistering the material, but the new model makes the job much easier. Using this approach, delamination can be precisely controlled by changing the strength of adhesion and the elastic properties of the film and wires. Previous work on stretchable electronic devices relied on complex microfabrication techniques to force delamination blisters to appear. Sometimes, this forces the blisters to become larger than their intrinsic size.

"Delamination blisters have a characteristic size that they try to choose for themselves," says Vella. "We've characterized this size so that in principle it can be determined just from the parameters of a given system."

Work on stretchable electronics has been ongoing over the past decade, and the technology has already been used in applications such as electronic paper and flexible displays. Prototype phones are also in the works.

The new study suggests that ultra-thin, flexible but strong materials such as graphene are ideal candidates for stretchable electronic applications.

The work was funded by the EU-NEST (New and Emerging Science and Technology) program and the French Agence National Recherche.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Peeling Stickers May Lead To Stretchable Electronics; New Model Enables Precise Design Of Damage-resistant Materials." ScienceDaily. ScienceDaily, 29 June 2009. <www.sciencedaily.com/releases/2009/06/090615171614.htm>.
Massachusetts Institute of Technology. (2009, June 29). Peeling Stickers May Lead To Stretchable Electronics; New Model Enables Precise Design Of Damage-resistant Materials. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2009/06/090615171614.htm
Massachusetts Institute of Technology. "Peeling Stickers May Lead To Stretchable Electronics; New Model Enables Precise Design Of Damage-resistant Materials." ScienceDaily. www.sciencedaily.com/releases/2009/06/090615171614.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins