Featured Research

from universities, journals, and other organizations

Mad Cow And Related Diseases: Copper Linked To Normal Functioning Of Prions

Date:
June 28, 2009
Source:
North Carolina State University
Summary:
Researchers have discovered a link between copper and the normal functioning of prion proteins, which are associated with transmissible spongiform encephalopathy diseases such as Cruetzfeldt-Jakob in humans or "mad cow" disease in cattle. Their work could have implications for patients suffering from these diseases, as well as from other prion-related diseases such as Alzheimers or Parkinson's.

North Carolina State University researchers have discovered a link between copper and the normal functioning of prion proteins, which are associated with transmissible spongiform encephalopathy diseases such as Cruetzfeldt-Jakob in humans or "mad cow" disease in cattle. Their work could have implications for patients suffering from these diseases, as well as from other prion-related diseases such as Alzheimers or Parkinson's.

Related Articles


Prion proteins, or PrPs, are commonly found in brain tissue and throughout the central nervous system. In humans or animals with prion diseases, these proteins deform and aggregate, creating clumps of PrPs that interfere with the nervous system's ability to function normally. A team of NC State physicists, led by Miroslav Hodak and Jerry Bernholc, has found that when PrPs bind with copper in the human body, their structure becomes more stable and less likely to misfold or aggregate.

"We believe that a prion protein's normal function is to serve as a copper buffer in the human body, binding with copper ions and keeping those ions from damaging human tissue," Hodak says. "We wanted to determine whether this was the normal function of the prion, and then look at how that binding affected the prion's structure."

The researchers created a 3-D model of the PrP using supercomputers at Oak Ridge National Laboratories. With the model, they determined that PrPs can bind up to four copper ions apiece, depending on the concentration of copper present. They also found that when the PrPs bind to the copper ions, the structure of the protein changes, becoming more stable.

"Prion proteins are unusual in that half of the protein has a well-defined structure, but the other half of it - where the binding occurs - is a flexible, random tangle," Hodak says. "When we looked at the so-called 'random' portion of the PrP where that binding occurs, we found that the copper ions lend stability to the overall protein. This stability may play a role in preventing PrPs from misfolding or aggregating - which indicates that with prion diseases, copper binding may be beneficial."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Miroslav Hodak, Robin Chisnell, Wenchang Lu and Jerry Bernholc. Cu2 Binding to the Prion Protein: Functional Implications and the Role of Copper. Proceedings of the National Academy of Sciences, June 22, 2009

Cite This Page:

North Carolina State University. "Mad Cow And Related Diseases: Copper Linked To Normal Functioning Of Prions." ScienceDaily. ScienceDaily, 28 June 2009. <www.sciencedaily.com/releases/2009/06/090625141506.htm>.
North Carolina State University. (2009, June 28). Mad Cow And Related Diseases: Copper Linked To Normal Functioning Of Prions. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2009/06/090625141506.htm
North Carolina State University. "Mad Cow And Related Diseases: Copper Linked To Normal Functioning Of Prions." ScienceDaily. www.sciencedaily.com/releases/2009/06/090625141506.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins