Featured Research

from universities, journals, and other organizations

Dynamic Molecular Mechanism To Keep Brain Activity Stable

Date:
July 17, 2009
Source:
National Institute for Physiological Sciences
Summary:
In the brain, many types of synaptic proteins are spatio-temporally regulated to maintain synaptic activity at a constant level. Here, scientists found that two types of palmitoylating enzymes finely-tune the location and function of a major synaptic protein, PSD-95, in different ways. They also found that this mechanism contributes to keeping synaptic activity stable when synaptic activity dynamically changes.

In the brain, many types of synaptic proteins are spatio-temporally regulated to maintain synaptic activity at a constant level. Here, the Japanese research group led by Professor Masaki Fukata, Drs. Yuko Fukata and Jun Noritake in National Institute for Physiological Sciences, Japan, found that two types of palmitoylating enzymes finely-tune the location and function of a major synaptic protein, PSD-95, in different ways.

They also found that this mechanism contributes to keeping synaptic activity stable when synaptic activity dynamically changes. The Japan Science and Technology Agency (JST) supported this study.

The research group focused on two types of palmitoylating enzymes, DHHC2 and DHHC3. Protein palmitoylation, the most common lipid modification with the 16-carbon fatty acid palmitate, provides an important mechanism for regulating synaptic proteins in neurons. Here, the research group found that DHHC3 is located in the cell body of neurons to palmitoylate newly synthesized synaptic proteins such as PSD-95, and move out them into dendrites of neurons. In contrast, DHHC2 are located mainly in dendrites of neurons. Dendritically localized DHHC2 mediates dynamic palmitoylation of PSD-95 at synapses upon extracellular signals. When synaptic activity decreases, DHHC2 translocates to the synaptic site to facilitate palmitoylation of synaptic proteins to keep synaptic activity at a constant level.

"We have already found 23 types of palmitoylating enzymes. Our finding suggests that individual palmitoylating enzymes have distinct functions in neurons. Some of palmitoylating enzymes are known to be differently related to neurological disorders such as mental retardation, schizophrenia and Huntington's disease. Therefore, this palmitoylating enzyme family may represent exciting therapeutic targets", said Professor Fukata.

They report the finding in Journal of Cell Biology published on July 13, 2009.


Story Source:

The above story is based on materials provided by National Institute for Physiological Sciences. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Physiological Sciences. "Dynamic Molecular Mechanism To Keep Brain Activity Stable." ScienceDaily. ScienceDaily, 17 July 2009. <www.sciencedaily.com/releases/2009/07/090713100916.htm>.
National Institute for Physiological Sciences. (2009, July 17). Dynamic Molecular Mechanism To Keep Brain Activity Stable. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2009/07/090713100916.htm
National Institute for Physiological Sciences. "Dynamic Molecular Mechanism To Keep Brain Activity Stable." ScienceDaily. www.sciencedaily.com/releases/2009/07/090713100916.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins