Featured Research

from universities, journals, and other organizations

Scientists Locate Disease Switches

Date:
July 18, 2009
Source:
University of Copenhagen
Summary:
A team of scientists has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may prove to be a crucial factor in human aging and the onset and treatment of diseases such as cancer, Alzheimer's disease and Parkinson's disease.

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, using groundbreaking technology, has identified no less than 3,600 molecular switches in the human body.

Related Articles


These switches, which regulate protein functions, may prove to be a crucial factor in human ageing and the onset and treatment of diseases such as cancer, Alzheimer's disease and Parkinson's disease.

New perspectives in the treatment of disease

The team, led by Professor Matthias Mann of Novo Nordisk Center for Protein Research at the University of Copenhagen and the Max Planck Institute for Biochemistry in Germany, have detected 3,600 acetylation switches in 1,750 different proteins.

"This is more than just a technological achievement, it has also expanded the number of known acetylation switches by a factor of six, and it gives us for the first time a comprehensive insight into this type of protein modification," says Professor Mann.

A given protein can perform more than one task, and how it behaves is regulated by adding a small molecule that acts as a 'switch' which can turn on the different tasks. Acetylation is essential for cells' ability to function normally. Defective protein regulation plays a role in ageing and the development of diseases such as cancer, Parkinson's and Alzheimer's.

"With the new mapping, we can now begin to study and describe how acetylation switches respond to medications that could repair the defects on them. It can have a major impact on medical care," says Professor Mann, adding that medications to repair the damaged protein regulation are already showing promising in the treatment of cancer.

Cooperating proteins

The team also discovered that acetylation modification occurs primarily on proteins that work together, and that these switches have much greater consequences for the organism's function than previously thought. In one example, the function of Cdc28, an important growth protein in yeast, can be disrupted by the addition of an acetylation button, ultimately affecting the organism's ability to survive.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Choudhary et al. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009; DOI: 10.1126/science.1175371

Cite This Page:

University of Copenhagen. "Scientists Locate Disease Switches." ScienceDaily. ScienceDaily, 18 July 2009. <www.sciencedaily.com/releases/2009/07/090717104614.htm>.
University of Copenhagen. (2009, July 18). Scientists Locate Disease Switches. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/07/090717104614.htm
University of Copenhagen. "Scientists Locate Disease Switches." ScienceDaily. www.sciencedaily.com/releases/2009/07/090717104614.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins