Featured Research

from universities, journals, and other organizations

Key To Designing Quantum Information Networks: Quantum Memory And Turbulence In Ultra-cold Atoms

Date:
July 28, 2009
Source:
American Physical Society
Summary:
Scientists have figured out a key step toward the design of quantum information networks. A quantum network – in which memory devices that store quantum states are interconnected with quantum information processing devices – is a prototype for designing a quantum internet.

Scientists at MIT have figured out how to relay the successful storage of light in a a form of quantum memory based on a cold-atom gas.
Credit: Image copyright American Physical Society [Illustration: Alan Stonebraker]

Scientists at MIT have figured out a key step toward the design of quantum information networks. The results are reported in the July 20th issue of Physical Review Letters and highlighted in APS's online journal Physics.

Related Articles


A quantum network – in which memory devices that store quantum states are interconnected with quantum information processing devices – is a prototype for designing a quantum internet. One path to making a quantum network is to map a light pulse onto nodes in a material system. Yet, it is one thing to catch a beam of light; it is more difficult to generate a signal that heralds that it has been successfully caught. Quantum systems follow Heisenberg's rule that observing an event may destroy it, so the system has to emit just the right kind of herald pulse so as not to erase the data.

Now, Haruka Tanji, Saikat Ghosh, Jonathan Simon, Benjamin Bloom, and Vladan Vuletic from MIT have demonstrated an atomic quantum memory that heralds the successful storage of a light beam in a cold atom gas. The atomic-ensemble memory can receive an arbitrary polarization state of an incoming photon, called a polarization qubit, announce successful storage of the qubit, and later regenerate another photon with the same polarization state. The herald signal only announces the fact the pulse has been captured, not details of the polarization, so the quantum information is preserved.

This capability will likely benefit scalable quantum networking, where it is crucial to know if operations have succeeded.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Key To Designing Quantum Information Networks: Quantum Memory And Turbulence In Ultra-cold Atoms." ScienceDaily. ScienceDaily, 28 July 2009. <www.sciencedaily.com/releases/2009/07/090720080904.htm>.
American Physical Society. (2009, July 28). Key To Designing Quantum Information Networks: Quantum Memory And Turbulence In Ultra-cold Atoms. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2009/07/090720080904.htm
American Physical Society. "Key To Designing Quantum Information Networks: Quantum Memory And Turbulence In Ultra-cold Atoms." ScienceDaily. www.sciencedaily.com/releases/2009/07/090720080904.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) — The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) — A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Malaysia Airlines Hack: Lizard Squad, ISIS Involved?

Malaysia Airlines Hack: Lizard Squad, ISIS Involved?

Newsy (Jan. 26, 2015) — Malaysia Airlines on Sunday experienced website outages and what appeared to be an attack by hacker group Lizard Squad. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins