Featured Research

from universities, journals, and other organizations

Short Stressful Events May Improve Working Memory

Date:
July 27, 2009
Source:
University at Buffalo
Summary:
Experiencing chronic stress day after day can produce wear and tear on the body physically and mentally, and can have a detrimental effect on learning and emotion. However, acute stress -- a short stressful incident -- may enhance learning and memory.

Experiencing chronic stress day after day can produce wear and tear on the body physically and mentally, and can have a detrimental effect on learning and emotion. However, acute stress -- a short stressful incident -- may enhance learning and memory.

Related Articles


Researchers at the University at Buffalo have shown, in trials using rodents as an animal model, that acute stress can produce a beneficial effect on learning and memory, through the effect of the stress hormone corticosterone (cortisol in humans) on the brain's prefrontal cortex, a key region that controls learning and emotion.

Specifically, they demonstrated that acute stress increases transmission of the neurotransmitter glutamate and improves working memory.

"Stress hormones have both protective and damaging effects on the body," said Zhen Yan, professor of physiology and biophysics at UB and senior author on the study. "This paper and others we have in the pipeline explain why we need stress to perform better, but don't want to be stressed out."

The study appeared July 20 in the online edition of Proceedings of the National Academy of Sciences and will be published in an upcoming print version of the journal. Eunice Y. Yuen, Ph.D., UB research assistant professor of physiology and biophysics, is the first author on the study.

To test the effect of acute stress on working memory, Yan, Yuen and colleagues trained rats in a maze until they could complete it correctly 60-70 percent of the time. When the rodents reached this level of accuracy for two consecutive days, half were put through a 20-minute forced swim, which served as acute stress, and then were put through the maze again.

Results showed that the stressed rats made significantly fewer mistakes as they went through the maze both four hours after the stressful experience and one day post-stress, compared to the non-stressed rats.

To determine if the corticosterone neuropathway was responsible for the improved memory, as they proposed, researchers injected one group of rats before the stressful forced-swim with a medicinal compound that blocks the pathway, and injected another group with saline. Results showed that the saline group, in which the corticosterone neuropathway was not blocked, performed better in the maze than the blocked group.

The researchers also determined that the stressful experience did not increase depression or anxiety-related behavior in the animals.

"It is known that stress has both positive and negative actions in the brain, but the underlying mechanism is elusive," said Yan. "Several key brain regions involved in cognition and emotions, including the prefrontal cortex, have been identified as the primary target of corticosteroid, the major stress hormone.

"Our current study identifies a novel mechanism that underlies the impact of acute stress on working memory, a cognitive process depending on glutamate receptor-mediated excitatory signals in prefrontal cortex circuits."

The investigators have expanded this research in several directions. In a paper currently under review, they have identified the key signaling molecules that link acute stress to the enhancement of glutamate receptors and working memory.

"In addition," noted Yan, "we have discovered that chronic stress suppresses the transmission of glutamate in the prefrontal cortex of male rodents, which is opposite to the facilitating effect of acute stress, and that estrogen receptors in female rodents make them more resilient to chronic stress than male rats.

"All these studies should bring new insights into the complex actions of stress in different circumstances that may be applicable to humans in the future," she said.

Wenhua Liu, Ph.D., postdoctoral associate, and Jain Feng, Ph.D., associate professor, both in the UB Department of Physiology and Biophysics, are co-authors on the study, along with Ilia N. Karatsoreos, Ph.D., and Bruce S. McEwen, Ph.D., from The Rockefeller University.

The research was supported by grants from the National Institutes of Health to Yan and a National Alliance for Research on Schizophrenia and Depression Young Investigator Award to Yuen.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University at Buffalo. "Short Stressful Events May Improve Working Memory." ScienceDaily. ScienceDaily, 27 July 2009. <www.sciencedaily.com/releases/2009/07/090723113657.htm>.
University at Buffalo. (2009, July 27). Short Stressful Events May Improve Working Memory. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2009/07/090723113657.htm
University at Buffalo. "Short Stressful Events May Improve Working Memory." ScienceDaily. www.sciencedaily.com/releases/2009/07/090723113657.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins