Featured Research

from universities, journals, and other organizations

Magnetic Microbe Genome Attracting Attention For Biotech Research

Date:
August 13, 2009
Source:
Cold Spring Harbor Laboratory
Summary:
The smallest organisms to use a biological compass are magnetotactic bacteria, however mysteries remain about exactly how these bacteria create their cellular magnets. In a new study, scientists have used genome sequencing to unlock new secrets about these magnetic microbes that could accelerate biotechnology and nanotechnology research.

This is a transmission electron micrograph of magnetotactic bacterium, Desulfovibrio magneticus strain RS-1, showing a chain of bullet-shaped magnetosomes aligned along the Earth's magnetic field.
Credit: Image courtesy of Tadashi Matsunaga (Tokyo University of Agriculture and Technology)

The smallest organisms to use a biological compass are magnetotactic bacteria, however mysteries remain about exactly how these bacteria create their cellular magnets. In a study published online in Genome Research, scientists have used genome sequencing to unlock new secrets about these magnetic microbes that could accelerate biotechnology and nanotechnology research.

Oxygen is essential for human life, but it is corrosive and poisonous to many bacteria. Magnetotactic bacteria evolved a clever method of using the Earth's magnetic field to orient itself and swim downward – exactly the direction a microbe must move to locate low oxygen areas in lakes and oceans. To find the direction of the magnetic field, these bacteria synthesize nanoscale cellular structures called magnetosomes that contain crystals of naturally occurring magnetic minerals.

The shape and composition of magnetosomes are species- and strain-specific, suggesting that magnetosome synthesis is biologically controlled. Magnetosomes are currently difficult to harvest in large quantities or synthesize artificially, therefore deciphering how cells form magnetosomes is crucial if they are to be useful in new technologies.

Genetic analyses have been performed in closely related magnetotactic bacteria, but because magnetosomes are also found in other classes of bacteria, scientists do not yet have a clear picture of the genetic components necessary for magnetosome formation. Tadashi Matsunaga of the Tokyo University of Agriculture and Technology and colleagues recognized that by analyzing the genome of more distantly related magnetotactic bacteria, researchers may be able to clearly define the minimal gene set needed for magnetosome synthesis.

In this work, Matsunaga's group sequenced the genome of Desulfovibrio magneticus strain RS-1, a more distant relative of other magnetotactic bacteria previously studied, and is also known for the unique bullet-shape of its magnetosomes. "Understanding the genes that control the morphology of these magnetosomes would be a significant breakthrough," said Matsunaga, noting that RS-1 could be the key to opening up new applications for magnetosomes.

Comparing the RS-1 genome sequence to the genomes of other magnetotactic bacteria, the team determined that all magnetotactic bacteria contain three separate gene regions related to magnetosome synthesis. Surprisingly, they also found that magnetosome-related genes are very well conserved across different classes of bacteria. Matsunaga explained that this suggests that the core magentosome genes may have been established in these bacteria by several horizontal gene transfer events, rather than being passed down through a lineage.

In addition to illuminating core magnetosome genes, the group expects that their work on RS-1 will be a stepping-stone to manipulation of magnetosomes for new technologies. Matsunaga said that further research with RS-1 "could open doors to the synthesis of morphologically controlled magnetosomes, and provide opportunities to their applications in electromagnetic tapes, drug delivery, magnetic resonance imaging, and cell separation."

Scientists from the National Institute of Technology and Evaluation (Tokyo, Japan) and the Tokyo University of Agriculture and Technology (Tokyo, Japan) contributed to this study. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Research, 2009; DOI: 10.1101/gr.088906.108

Cite This Page:

Cold Spring Harbor Laboratory. "Magnetic Microbe Genome Attracting Attention For Biotech Research." ScienceDaily. ScienceDaily, 13 August 2009. <www.sciencedaily.com/releases/2009/08/090811191649.htm>.
Cold Spring Harbor Laboratory. (2009, August 13). Magnetic Microbe Genome Attracting Attention For Biotech Research. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/08/090811191649.htm
Cold Spring Harbor Laboratory. "Magnetic Microbe Genome Attracting Attention For Biotech Research." ScienceDaily. www.sciencedaily.com/releases/2009/08/090811191649.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins