Featured Research

from universities, journals, and other organizations

Open Source DNA: A New Solution To Guarantee Privacy And Scientific Freedom In Genetic Research

Date:
September 6, 2009
Source:
American Friends of Tel Aviv University
Summary:
A new mathematical tool from a computer scientist in Israel aims to protect genetic privacy while giving genomic data to researchers.

In the chilling science fiction movie Gattaca, Ethan Hawke stars as a man with "inferior genes" who assumes another's genetic identity to escape a dead-end future. The 1997 film illustrates the very real fear swirling around today's genome research — fear that private genetic information could be used negatively against us.

Last year, after a published paper found serious security holes in the way DNA data is made publicly available, health institutes in the United States and across the world removed all genetic data from public access.

"Unfortunately, that knee-jerk response stymied potential breakthrough genetic research," says Dr. Eran Halperin of Tel Aviv University's Blavatnik School of Computer Sciences and Department of Molecular Microbiology and Biotechnology. He wants to put this valuable DNA information back in circulation, and has developed the tool to do it — safely.

Working with colleagues at the University of California in Berkeley, Dr. Halperin devised a mathematical formula that can be used to protect genetic privacy while giving researchers much of the raw data they need to do pioneering medical research. Reported in this month's issue of Nature Genetics, the tool could keep millions of research dollars-worth of DNA information available to scientists.

New security to restart genetic research

"We've developed a mathematical formula and a software solution that ensures that malicious eyes will have a very low chance to identify individuals in any study," says Dr. Halperin, who is also affiliated with the International Computer Science Institute in Berkeley.

The mathematical formula that Dr. Halperin's team devised can determine which SNPs — or small pieces of DNA — that differ from individual to individual in the human population — are accessible to the public without revealing information about the participation of any individual in the study. Using computer software that implements the formula, the National Institutes of Health and similar institutes around the world can distribute important research data, but keep individual identities private.

"We've been able to determine how much of the DNA information one can reveal without compromising a person's identity," says Dr. Halperin. "This means the substantial effort invested in collecting this data will not have been in vain."

Why is this information so important? Genome association studies can find links in our genetic code for conditions like autism and predispositions for cancer. Armed with this information, individuals can avoid environmental influences that might bring on disease, and scientists can develop new gene-based diagnosis and treatment tools.

A new track for government policymakers

Examining SNP positions in our genetic code, Dr. Halperin and his colleagues demonstrated the statistical improbabilities of identifying individuals even when their complete genetic sequence is known. "We showed that even when SNPs across the entire genome are collected from several thousand people, using our solution the ability to detect the presence of any given individual is extremely limited," he says.

Dr. Halperin hopes his research will reverse the NIH policy, and he will provide access to the software so that researchers can use it to decide which genetic information can be safely loaded into a public database. He also hopes it will quell raging debates about DNA usage and privacy issues.

The Tel Aviv University-Berkeley research was done while Dr. Halperin was working with the International Computer Science Institute (ICSI), a non-profit research institute with close relations to the University of California (UC) and Tel Aviv University. Other coauthors of the study include Sriram Sankararaman, and Prof. Michael Jordan from UC, and Dr. Guillaume Obozinski from Willow, a joint research team between INRIA Rocquencourt, Ιcole Normale Supιrieure de Paris and Centre National de la Recherche Scientifique.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Cite This Page:

American Friends of Tel Aviv University. "Open Source DNA: A New Solution To Guarantee Privacy And Scientific Freedom In Genetic Research." ScienceDaily. ScienceDaily, 6 September 2009. <www.sciencedaily.com/releases/2009/08/090831130800.htm>.
American Friends of Tel Aviv University. (2009, September 6). Open Source DNA: A New Solution To Guarantee Privacy And Scientific Freedom In Genetic Research. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/08/090831130800.htm
American Friends of Tel Aviv University. "Open Source DNA: A New Solution To Guarantee Privacy And Scientific Freedom In Genetic Research." ScienceDaily. www.sciencedaily.com/releases/2009/08/090831130800.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins