Featured Research

from universities, journals, and other organizations

Platinum Nanocatalyst Could Aid Drugmakers

Date:
September 1, 2009
Source:
Rice University
Summary:
Nanoparticles combining platinum and gold act as superefficient catalysts, but chemists have struggled to create them in an industrially useful form. Chemists report making a plastic-coated gold-platinum nanorod that can be used in the organic solvents favored by chemical and drug manufacturers. Tests reveal that the polymer-functionalized particles have nearly 100 percent catalytic selectivity for the hydrogenation of terminal olefins.

Nanoparticles combining platinum and gold act as superefficient catalysts, but chemists have struggled to create them in an industrially useful form. Rice University chemists have answered the call this week with a polymer-coated version of gold-platinum nanorods, the first catalysts of their kind that can be used in the organic solvents favored by chemical and drug manufacturers.

The research is available online in the Sept. 1 issue of the German scientific journal Angewandte Chemie International Edition.

Catalysts are compounds that speed up or slow down chemical reactions without being consumed by them. An everyday example would be the catalytic converters that help breakdown toxic components of automotive exhaust. The chemical and drug industries spend billions of dollars each year for catalysts that are needed to process drugs and other high-value chemicals.

"There are some industrial reactions where drugmakers have no choice but to use platinum and palladium catalysts, but the majority of these are homogenous, which means they mix readily with reactants and are very difficult to remove," said lead researcher Eugene Zubarev, associate professor in chemistry at Rice. "Because these heavy metals are toxic, they must be completely removed from the drug after its synthesis is completed. However, the removal of homogeneous catalysts is very time-consuming and expensive, which creates a big problem for pharmaceutical companies."

Among catalysts, platinum and palladium are prized for reactions involving hydrogen because atoms of hydrogen typically join together in pairs, and platinum and palladium are particularly good at cleaving these pairs and leaving the individual hydrogen atoms available for reactions with other molecules.

Zubarev and Rice graduate student Bishnu Khanal, who will soon start his postdoctoral research at Los Alamos National Laboratory, set out to make a heterogeneous platinum catalyst that was soluble enough for industrial use, but that could also be easily removed.

Previous studies had shown that combining platinum with gold in tiny nanoparticles could enhance the platinum's catalytic effect, so Zubarev and Khanal started with tiny rods of pure gold and coated them with a layer of platinum so thin that it left the gold exposed in some places.

After confirming the structure of the gold-platinum nanorods, Zubarev and Khanal had to find a way to make them soluble in organic solvents that are favored by industry. Building on Zubarev's previous work in making soluble gold nanorods, the pair found a way to attach hair-like molecules of polystyrene to the surface of the gold-platinum rods.

Zubarev and Khanal found the coated particles were easy to remove from solution with a conventional centrifuge. In addition, the polystyrene shells made them completely soluble in organic solvents and dramatically enhanced their catalytic selectivity.

"The selectivity of the coated gold and platinum nanorods will be very attractive to industry," Zubarev said. "For example, we found they had nearly 100 percent catalytic selectivity for the hydrogenation of terminal olefins."

Zubarev's group is using similar methods to produce gold-palladium catalysts in a follow-up study. Palladium is another high-demand catalyst. "The early indications are very promising," he said.

The research is supported by the National Science Foundation, the Robert A. Welch Foundation and the Alfred Sloan Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Platinum Nanocatalyst Could Aid Drugmakers." ScienceDaily. ScienceDaily, 1 September 2009. <www.sciencedaily.com/releases/2009/08/090831213204.htm>.
Rice University. (2009, September 1). Platinum Nanocatalyst Could Aid Drugmakers. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2009/08/090831213204.htm
Rice University. "Platinum Nanocatalyst Could Aid Drugmakers." ScienceDaily. www.sciencedaily.com/releases/2009/08/090831213204.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins