Featured Research

from universities, journals, and other organizations

New Calculations May Improve Temperature Measures For Microfluidics

Date:
September 11, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have proposed a mathematical tweak that improves the accuracy of a temperature measurement technique used to monitor critical temperatures in microfludic devices used for tasks such as medical diagnostics and DNA forensics.

If you wanted to know if your child had a fever or be certain that the roast in the oven was thoroughly cooked, you would, of course, use a thermometer that you trusted to give accurate readings at any temperature within its range. However, it isn't that simple for researchers who need to measure temperatures in microfluidic systems—tiny, channel-lined devices used in medical diagnostics, DNA forensics and "lab-on-a-chip" chemical analyzers—as their current "thermometer" can only be precisely calibrated for one reference temperature.

Related Articles


Now, researchers at the National Institute of Standards and Technology (NIST) have proposed a mathematical solution that enables researchers to calibrate the "thermometer" for microfluidic systems so that all temperatures are covered.

Reactions taking place in microfluidic systems often require heating, meaning that users must accurately monitor temperature changes in fluid volumes ranging from a few microliters (a droplet approximately 1 millimeter in diameter) to sub-nanoliters (a droplet approximately 1/10 of millimeter in diameter). A common DNA analysis technique, for example, depends heavily on precise temperature cycling. Ordinary thermometers or other temperature probes are useless at such tiny dimensions, so some groups have turned to temperature-sensitive fluorescent dyes, particularly rhodamine B. The intensity of the dye's fluorescence decreases with increasing temperature. The idea is that the dye can be used as a noninvasive way to map the range of temperatures occurring within a microfluidic system during heating and, in turn, provide a means of calibrating that system for experiments.

However, the technique currently requires the user to base all readings on the fluorescence at a single reference temperature. Previous groups have developed "calibration curves" that relate temperature to rhodmaine B fluorescent intensity based on a reference temperature of about 23 degrees Celsius (a technique first proposed by NIST researchers David Ross, Michael Gaitan and Laurie Locascio in 2001*). But it turns out that the curves are only good for that one temperature. In an upcoming paper in Analytical Chemistry, the NIST team—Jayna J. Shah, Michael Gaitan and Jon Geist—reports that changing the reference point, such as the higher temperature when a microfluidic system is first heated, introduces errors when a dye intensity-to-temperature calculation is done using current methods.

"Our analysis shows that a simple linear correction for a 40 degrees Celsius reference temperature identified errors between minus 3 to 8 degrees Celsius for three previously published sets of calibration equations derived at approximately 23 degrees Celsius," says lead researcher Shah.

To address the problem, the NIST team developed mathematical methods to correct for the shift experienced when the reference temperature changes. This allowed the researchers to create generalized calibration equations that can be applied to any reference temperature.

Microfluidic DNA amplification (production of numerous copies of DNA from a tiny sample) by the polymerase chain reaction (PCR) is one procedure that could benefit from the new NIST calculations, Shah says. "PCR requires a microfluidic device to be cycled through temperatures at three different zones starting around 65 degrees Celsius, so a useful dye intensity-to-temperature ratio would have to be based on that temperature and not a reference point of 23 degrees Celsius," she explains.

* D. Ross, M. Gaitan and L.E. Locascio. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Analytical Chemistry, Vol. 73, No. 17, pages 4117-4123, Sept. 1, 2001.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. J.J. Shah, M. Gaitan and J. Geist. Generalized temperature measurement equations for rhodamine B dye solution and its application to microfluidics. Analytical Chemistry, Vol. 81, No. 19, Oct. 1, 2009 (published online Sept. 1, 2009)

Cite This Page:

National Institute of Standards and Technology (NIST). "New Calculations May Improve Temperature Measures For Microfluidics." ScienceDaily. ScienceDaily, 11 September 2009. <www.sciencedaily.com/releases/2009/09/090909111626.htm>.
National Institute of Standards and Technology (NIST). (2009, September 11). New Calculations May Improve Temperature Measures For Microfluidics. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/09/090909111626.htm
National Institute of Standards and Technology (NIST). "New Calculations May Improve Temperature Measures For Microfluidics." ScienceDaily. www.sciencedaily.com/releases/2009/09/090909111626.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins