Featured Research

from universities, journals, and other organizations

Swimming Robot Makes Waves At Bath

Date:
September 25, 2009
Source:
University of Bath
Summary:
Researchers have used nature for inspiration in designing a new type of swimming robot which could bring a breakthrough in submersible technology.

Postgraduate researchers Keri Collins and Ryan Ladd developed the Gymnobot. It is powered by a fin that runs the length of the underside of its rigid body; this undulates to make a wave in the water which propels the robot forwards.
Credit: Image courtesy of University of Bath

Researchers at the University of Bath have used nature for inspiration in designing a new type of swimming robot which could bring a breakthrough in submersible technology.

Conventional submarine robots are powered by propellers that are heavy, inefficient and can get tangled in weeds.

In contrast ‘Gymnobot', created by researchers from the Ocean Technologies Lab in the University's Department of Mechanical Engineering, is powered by a fin that runs the length of the underside of its rigid body; this undulates to make a wave in the water which propels the robot forwards.

The design, inspired by the Amazonian knifefish, is thought to be more energy efficient than conventional propellers and allows the robot to navigate shallow water near the sea shore.

Gymnobot could be used to film and study the diverse marine life near the seashore, where conventional submersible robots would have difficulty manoeuvring due to the shallow water with its complex rocky environment and plants that can tangle a propeller.

Dr William Megill, Lecturer in Biomimetics at the University of Bath, explained: "The knifefish has a ventral fin that runs the length of its body and makes a wave in the water that enables it to easily swim backwards or forwards in the water.

"Gymnobot mimics this fin and creates a wave in the water that drives it forwards. This form of propulsion is potentially much more efficient than a conventional propeller and is easier to control in shallow water near the shore."

Keri Collins, a postgraduate student who developed the Gymnobot as part of her PhD, added: "We hope to observe how the water flows around the fin in later stages of the project. In particular we want to look at the creation and development of vortices around the fin.

"Some fish create vortices when flicking their tails one way but then destroy them when their tails flick back the other way. By destroying the vortex they are effectively re-using the energy in that swirling bit of water. The less energy left in the wake when the fish has passed, the less energy is wasted.

"It will be particularly interesting to see how thrust is affected by changing the wave of the fin from a constant amplitude to one that is tapered at one end."

The lab was recently awarded a grant to work with six other European institutions to create a similar robot that reacts to water flow and is able to swim against currents.

In addition to studying biodiversity near the shore and in fast-flowing rivers, robots like Gymnobot could also be used for detecting pollution in the environment or for inspecting structures such as oil rigs.

The project was funded by BMT Defence Services and the Engineering & Physical Sciences Research Council.


Story Source:

The above story is based on materials provided by University of Bath. Note: Materials may be edited for content and length.


Cite This Page:

University of Bath. "Swimming Robot Makes Waves At Bath." ScienceDaily. ScienceDaily, 25 September 2009. <www.sciencedaily.com/releases/2009/09/090921091835.htm>.
University of Bath. (2009, September 25). Swimming Robot Makes Waves At Bath. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/09/090921091835.htm
University of Bath. "Swimming Robot Makes Waves At Bath." ScienceDaily. www.sciencedaily.com/releases/2009/09/090921091835.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins