Featured Research

from universities, journals, and other organizations

Coal-mining Hazard Resembles Explosive Volcanic Eruption, Study Shows

Date:
October 1, 2009
Source:
University of Michigan
Summary:
Worldwide, thousands of workers die every year from mining accidents, and instantaneous coal outbursts in underground mines are among the major killers. But although scientists have been investigating coal outbursts for more than 150 years, the precise mechanism is still unknown.

Worldwide, thousands of workers die every year from mining accidents, and instantaneous coal outbursts in underground mines are among the major killers. But although scientists have been investigating coal outbursts for more than 150 years, the precise mechanism is still unknown.

New research by scientists at the University of Michigan and Peking University in Beijing, China, suggests that the outbursts occur through a process very similar to what happens during explosive volcanic eruptions. The research is described in a paper in the October issue of the journal Geology.

"Just as magma can fragment when pressure on it is reduced, triggering an explosive eruption, gas-rich coal can also erupt when suddenly decompressed, as happens when excavation exposes a new layer of coal," said Youxue Zhang, professor of geology, whose previous work on volcanic eruptions, Africa's "exploding lakes" and theorized methane-driven ocean eruptions set the stage for the current research.

Zhang did much of the work on the coal outburst project in 2006 and 2007, during a part-time professorship at Peking University. Around that time, a number of deadly coal mine accidents---in China, Russia and the United States---had made headlines, and just before leaving for China in 2006, Zhang had printed out articles about the disasters to read during his flight.

"While reading a paper describing coal outbursts as violent ejection of pulverized coal particles and gas, the similarity of coal outbursts to magma fragmentation suddenly occurred to me," Zhang said.

When he arrived at Peking University, he discussed the idea with colleague Ping Guan, and the two decided to collaborate on experiments simulating coal outbursts. Zhang recruited undergraduate student Haoyue Wang to help with the project, in which the researchers used a shock tube apparatus similar to the one Zhang had used in previous experiments on explosive volcanic eruptions. Their experiments verified that coal outbursts are driven by high gas pressure inside coal and occur through a mechanism similar to magma fragmentation.

Before an explosive volcanic eruption, magma (molten rock in Earth's crust) contains a high concentration of dissolved gas, mainly water vapor. When pressure on the magma is reduced, as happened in the 1980 eruption of Mount St. Helens when overlying rock was suddenly removed, gas bubbles in the magma rapidly expand. Pressure is higher inside the bubbles than in the surrounding magma, and when pressure on the bubble walls builds to the breaking point, the bubbles burst and the magma fragments into pieces in an explosive eruption.

In deep coal beds, coal contains high concentrations of the gases carbon dioxide and methane. When a coal seam is exposed, pressure on the coal is reduced, but pressure on the gas inside the coal remains high. When the resulting stress exceeds the coal's strength, the coal fragments, releasing high-pressure gas that suddenly decompresses, ejecting outward and carrying pulverized coal with it.

The first recorded coal outburst was in France in 1834. Since then, outbursts have occurred in China, Russia, Turkey, Poland, Belgium, Japan and about a dozen other nations. They happen only in deep mines where coal contains gas at high pressure, but as deeper coals are mined to satisfy the world's energy demands, the risk of outbursts increases.

"Knowing the mechanism of coal outbursts is the first step toward predicting and preventing such disasters," said Zhang.

Next, the researchers plan more experiments to verify their results. Then, they hope to capture details of the outbursts with a high-speed camera and to study a variety of coal types from different mines.

The research was funded by Peking University, the Chinese National Science Foundation and the U.S. National Science Foundation.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Coal-mining Hazard Resembles Explosive Volcanic Eruption, Study Shows." ScienceDaily. ScienceDaily, 1 October 2009. <www.sciencedaily.com/releases/2009/10/091001081219.htm>.
University of Michigan. (2009, October 1). Coal-mining Hazard Resembles Explosive Volcanic Eruption, Study Shows. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/10/091001081219.htm
University of Michigan. "Coal-mining Hazard Resembles Explosive Volcanic Eruption, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2009/10/091001081219.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins