Featured Research

from universities, journals, and other organizations

Breakthrough In Lab-on-chip For Fast Cancer Detection And Therapy

Date:
October 28, 2009
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
European researchers have achieved a major milestone in the development of a lab-on-chip for the detection and therapy evaluation of breast cancer. This is the first time that a lab-on-chip system including many complex sample preparation steps and multiplexed detection was conceived and is being implemented. All modules for sample preprocessing and detection are ready for further miniaturization and integration in a single lab-on-chip platform. The system will be clinically validated in a breast cancer therapy study in Oslo.

IMEC, a leading European research center in nanotechnology, the Institόt fόr Mikrotechnik Mainz (IMM), one of the leading European research centers in microfluidics, and their partners within the European Sixth Framework Project MASCOT achieve a major milestone in the development of a lab-on-chip for the detection and therapy evaluation of breast cancer.

This is the first time that a lab-on-chip system including many complex sample preparation steps and multiplexed detection was conceived and is being implemented. All modules for sample preprocessing and detection are ready for further miniaturization and integration in a single lab-on-chip platform. The system will be clinically validated in a breast cancer therapy study in Oslo.

Circulating tumor diagnostics is a promising methodology to individually follow up cancer patients in an early or advanced phase during therapy, thereby improving the medical doctor's therapy decisions. In the case of breast cancer, 5 ml of blood contains only 2 to 3 tumor cells. To detect cancer from blood, these rare circulating tumor cells need to be isolated, enriched and their genetic content has to be identified.

Current diagnostics performed in medical laboratories are labor intensive, expensive and time-consuming. They require many sample preprocessing steps in different medical instruments so that the full analysis takes more than a day. A lab-on-chip system however can bring huge advantages both to the patient and the healthcare system. They enable a fast, easy-to-use, cost-effective test method which can be performed at regular times in a doctor’s office or even near the patient’s bed. Lab-on-chip systems are a labor-saving and minimally invasive solution for cancer cell detection, therapy selection and monitoring.

The project partners developed a modular platform where each module has its specific task and autonomy and as such can also be used for many different medical applications. The first module is the incubation module performing the mixing of the blood sample with functionalized magnetic beads which specifically bind the tumor cells. The second module is used for tumor cell isolation and counting using a combination of dielectrophoresis and magnetic sensing with single cell sensitivity. In the third module, the amplification module, the cell wall of the tumor cells is destroyed and the genetic material (i.e. the mRNA) is extracted and amplified based on multiplex ligation dependent probe amplification (MLPA).

Within this module, specific assays amplify about 20 markers that are expressed in breast carcinoma cells. In the final detection module, the amplified genetic material is detected using an array of electrochemical sensors. The different building blocks have been developed and validated on spiked blood samples. The modules are now ready for further hetero-integration into a single lab-on-chip. By miniaturizing and merging the microfluidic and electronic functionalities the reliability and accuracy of the patient’s analysis will be improved. The clinical use of the system will be evaluated to compare it to more conventional approaches in a breast cancer therapy follow-up study.

Within the framework of the MASCOT project, IMEC collaborates with the Institut fόr Mikrotechnik Mainz (Germany), AdnaGenAG (Germany), Universitat Rovira i Virgili in Sweden, NorwegianRadium Hospital (Norway), MRC Holland (The Netherlands), and FuijerebioDiagnosticsAB (Spain). The project’s aim is to develop an integrated microsystem for the magnetic isolation and analysis of single circulating tumor cells for oncology diagnostics and therapy follow-up. MASCOT was partly funded by the European Commission (IST-027652).


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Breakthrough In Lab-on-chip For Fast Cancer Detection And Therapy." ScienceDaily. ScienceDaily, 28 October 2009. <www.sciencedaily.com/releases/2009/10/091008133321.htm>.
Interuniversity Microelectronics Centre (IMEC). (2009, October 28). Breakthrough In Lab-on-chip For Fast Cancer Detection And Therapy. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/10/091008133321.htm
Interuniversity Microelectronics Centre (IMEC). "Breakthrough In Lab-on-chip For Fast Cancer Detection And Therapy." ScienceDaily. www.sciencedaily.com/releases/2009/10/091008133321.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) — In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins