Featured Research

from universities, journals, and other organizations

Bioengineering Of Nerve-muscle Connection Could Improve Hand Use For Wounded Soldiers

Date:
October 17, 2009
Source:
University of Michigan Health System
Summary:
Prosthetic hand devices used by wounded soldiers have limited motor control and no sensory feedback. But a bioengineered interface, made of muscle cells and a nano-sized polymer, could go a long way in creating prostheses that move like a normal hand. Animal studies show the interface may possibly restore a sense of touch.

New research offers hope that tissue engineering could improve the function of prosthetic hands and possibly restore the sense of touch for injured soldiers and other patients.
Credit: iStockphoto/Michelle Malven

Modern tissue engineering developed at the University of Michigan could improve the function of prosthetic hands and possibly restore the sense of touch for injured patients.

Researchers will present their updated findings Wednesday at the 95th annual Clinical Congress of the American College of Surgeons.

The research project, which was funded by the Department of Department of Defense, arose from a need for better prosthetic devices for troops wounded in Afghanistan and Iraq.

"Most of these individuals are typically using a prosthesis design that was developed decades ago," says Paul S. Cederna, M.D., a plastic and reconstructive surgeon at U-M Health System and associate professor of surgery at the U-M Medical School. "This effort is to make a prosthesis that moves like a normal hand."

U-M researchers may help overcome some of the shortcomings of existing robotic prosthetics, which have limited motor control, provide no sensory feedback and can be uncomfortable and cumbersome to wear.

"There is a huge need for a better nerve interface to control the upper extremity prostheses," says Cederna.

When a hand is amputated, the nerve endings in the arm continue to sprout branches, growing a mass of nerve fibers that send flawed signals back to the brain.

The researchers created what they called an "artificial neuromuscular junction" composed of muscle cells and a nano-sized polymer placed on a biological scaffold. Neuromuscular junctions are the body's own nerve-muscle connections that enable the brain to control muscle movement.

That bioengineered scaffold was placed over the severed nerve endings like a sleeve.

The muscle cells on the scaffold and in the body bonded and the body's native nerve sprouts fed electrical impulses into the tissue, creating a stable nerve-muscle connection.

In laboratory rats, the bioengineered interface relayed both motor and sensory electrical impulses and created a target for the nerve endings to grow properly.

"The polymer has the ability to pick up signals coming out of the nerve, and the nerve does not grow an abnormal mass of nerve fibers," explains Cederna.

The animal studies indicate the interface may not only improve fine motor control of prostheses, but can also relay sensory perceptions such as touch and temperature back to the brain.

Laboratory rats with the interface responded to tickling of feet with appropriate motor signals to move the limb, says Cederna.

The Department of Defense and the Army have already provided $4.5 million in grants to support the research. Meanwhile, the research team has submitted a proposal to the Defense Advance Research Project Agency to begin testing the bioengineered interface in humans in three years.

Addtitional U-M authors of the study include William M. Kuzon, Jr., M.D., Ph.D., head of plastic surgery and professor of surgery; David C. Martin, Ph.D., professor of biomedical engineering; Daryl R. Kipke, Ph.D., professor of biomedical engineering; Melanie Urbancheck, Ph.D., research investigator; and Brent M. Egeland, M.D., surgical resident.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan Health System. "Bioengineering Of Nerve-muscle Connection Could Improve Hand Use For Wounded Soldiers." ScienceDaily. ScienceDaily, 17 October 2009. <www.sciencedaily.com/releases/2009/10/091014122043.htm>.
University of Michigan Health System. (2009, October 17). Bioengineering Of Nerve-muscle Connection Could Improve Hand Use For Wounded Soldiers. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2009/10/091014122043.htm
University of Michigan Health System. "Bioengineering Of Nerve-muscle Connection Could Improve Hand Use For Wounded Soldiers." ScienceDaily. www.sciencedaily.com/releases/2009/10/091014122043.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins