Featured Research

from universities, journals, and other organizations

All-in-one Computerized Scheduling Will Make Airports Greener And More Efficient

Date:
October 19, 2009
Source:
Engineering and Physical Sciences Research Council
Summary:
A new computerized approach to airport operations is being developed that will reduce delays, speed up baggage handling and decrease pollution.

A new computerised approach to airport operations is being developed that will reduce delays, speed up baggage handling and decrease pollution.

The project is funded by the Engineering and Physical Sciences Research Council (EPSRC) and led by researchers at The University of Nottingham.

The research work aims to computerise and co-ordinate four key areas of airport operations: scheduling of aeroplanes taking-off and landing, gate assignment and baggage handling. The end result will be a prototype search engine capable of analysing the many billions of possible scheduling combinations so as to provide the best advice to the controllers, who decide where in the airport to send planes.

Currently these four aspects of airport operations are, in most cases, organised manually by highly skilled staff making decisions based on observations, reports and their experience. Furthermore, each activity is run in isolation from the others, which allows the potential for any difficulties in operations in one area to affect another. This can lead to delays snowballing.

As well as enhancing the experience for passengers, crucially, the improvements in scheduling will reduce pollution by minimising the time planes are on the ground with engines running. This could save thousands of litres of aviation fuel every year, a vital improvement given the growth in air travel predicted in the coming years.

A consortium of researchers from four universities are involved in the project, assisted by Manchester and Zurich Airports which will provide crucial advice and expertise from the user's point of view.

The project will see development of computational models for each of the four airport operations which, ultimately, will be run on regular PCs. Key to the research will be examining how to run them all together to streamline overall operations.

Principal investigator on the project and Dean of the Faculty of Science at The University of Nottingham, Professor Edmund Burke, says the limitations of the current systems are widely acknowledged: "Many people in the industry recognise that automating just one of these aspects could improve the efficient running of airport operations, so integrating all four would be a huge step forward."

"We'll be developing a computer system that will work its way through the many billions of permutations created daily in each of these operations, to provide a much higher level of computer-aided decision support than is currently available," says Burke. This will provide the best possible advice to runway controllers and other airport staff to inform their decisions regarding where planes and baggage are moved to.

Among the crucial issues being tackled is the matter of how long an aeroplane needs for preparation on the ground before take off. This has to include enough time for the passenger safety briefing, which is a legal requirement, and for the engines to warm up. If sent to the runway without incorporating enough time for these activities, it will mean a delay at the runway before take off. This can lead to unnecessary congestion on the runway, aircraft unnecessarily using up fuel while waiting for take off, and, potentially, delays to other flights.

Burke adds that the involvement of the two airports will also provide invaluable assistance to the multi-disciplinary team of scientists and engineers: "Working closely with Manchester and Zurich airports will ensure access to real world expertise that should help us achieve the best possible result."

The academic team in the consortium consists of representatives from: The University of Nottingham, University of Salford, Loughborough University and University of Liverpool.

The four-year research project "Integrating and Automating Airport Operations" will begin on 1 December 2009 and is scheduled to end on 30 November 2013. It has received EPSRC funding of 681,924.

Research by the Georgia Institute of Technology in 2006 found that a 1% increase in air transport leads to a 5% increase in delays. With a 26% rise in air transport expected by 2013, compared to 2006, (according to the European Organisation for the Safety of Air Navigation) this project could help airports change the way they operate.


Story Source:

The above story is based on materials provided by Engineering and Physical Sciences Research Council. Note: Materials may be edited for content and length.


Cite This Page:

Engineering and Physical Sciences Research Council. "All-in-one Computerized Scheduling Will Make Airports Greener And More Efficient." ScienceDaily. ScienceDaily, 19 October 2009. <www.sciencedaily.com/releases/2009/10/091019122651.htm>.
Engineering and Physical Sciences Research Council. (2009, October 19). All-in-one Computerized Scheduling Will Make Airports Greener And More Efficient. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/10/091019122651.htm
Engineering and Physical Sciences Research Council. "All-in-one Computerized Scheduling Will Make Airports Greener And More Efficient." ScienceDaily. www.sciencedaily.com/releases/2009/10/091019122651.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins