Featured Research

from universities, journals, and other organizations

Inventive Approach May Improve Enzyme Replacement Therapy For Fabry Disease

Date:
October 24, 2009
Source:
Cell Press
Summary:
A new study uses a creative structure-based remodeling strategy to design a therapeutic protein that exhibits significant advantages over currently available treatments for a rare disease that often leads to cardiac and renal failure. The research offers a new and highly promising candidate for enzyme replacement therapy for Fabry disease.

A new study uses a creative structure-based remodeling strategy to design a therapeutic protein that exhibits significant advantages over currently available treatments for a rare disease that often leads to cardiac and renal failure. The research, published by Cell Press on October 22nd in the American Journal of Human Genetics, describes a new and highly promising candidate for enzyme replacement therapy (ERT) for Fabry disease.

Fabry disease is a rare genetic disorder caused by a deficiency in alpha-galactosidase-A (GLA), an enzyme that breaks down fatty substances called glycolipids. Without the proper level of enzyme activity, a glycolipid called globotriaosylceramide (Gb3) accumulates to harmful levels inside cellular structures called lysosomes and damages the skin, nerves, eyes, kidneys and cardiovascular system. Although scientists have generated GLA for ERT, thus far this approach has proved challenging.

"Many patients have been successfully treated with these manufactured GLA proteins, but there are still problems to be resolved," explains senior study author Dr. Hitoshi Sakuraba from Meiji Pharmaceutical University in Tokyo. "For example, these enzymes are unstable in the blood, do not effectively reach the kidneys and heart and frequently cause an allergic reaction in Fabry patients."

Dr. Sakuraba and colleagues took a different approach and, instead of making recombinant GLA, attempted to alter a different enzyme, called ?-N-acetylgalactosaminidase (NAGA), so that it could function like GLA. Normally, NAGA catalyses the hydrolysis of a different type of substrate and does not recognize the same substrates as GLA. Importantly, although NAGA is structurally similar to GLA, it does not react with the immune system in the same way.

The researchers examined the structures of GLA and NAGA and predicted how to alter NAGA so that it would recognize GLA substrates. Because the overall structure of NAGA was not changed, it was not expected to cause an allergic reaction in Fabry patients. The modified NAGA was found to be more stable than recombinant GLA and exhibited characteristics necessary for efficient incorporation into cells.

"Following confirmation of the effect of modified NAGA on cultured Fabry cells, we injected it into Fabry mice, and examined the incorporation of the enzyme into organs and its Gb3-degrading activity," explains Dr. Sakuraba. The modified NAGA was successfully incorporated into the liver, kidneys and the heart and there was a decrease in Gb3 accumulation in these organs.

"The enzyme has many advantages because of it high stability and the low possibility of the occurrence of an allergic reaction, although these characteristics should be confirmed in clinical studies in the future," concludes Dr. Sakuraba. "The modified NAGA is highly promising as a new enzyme for ERT for Fabry disease, and such structure-based designing of modified enzymes should be useful for the development of ERT for lysosomal storage diseases."

The researchers include Youichi Tajima, Meiji Pharmaceutical University, Tokyo, Japan, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan; Ikuo Kawashima, Meiji Pharmaceutical University, Tokyo, Japan, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan; Takahiro Tsukimura, Meiji Pharmaceutical University, Tokyo, Japan, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan; Kanako Sugawara, Meiji Pharmaceutical University, Tokyo, Japan; Mayuko Kuroda, Meiji Pharmaceutical University, Tokyo, Japan; Toshihiro Suzuki, Meiji Pharmaceutical University, Tokyo, Japan; Tadayasu Togawa, Meiji Pharmaceutical University, Tokyo, Japan; Yasunori Chiba, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; Yoshifumi Jigami, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; Kazuki Ohno, NPO for the Promotion of Research on Intellectual Property Tokyo, Tokyo, Japan; Tomoko Fukushige, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Takuro Kanekura, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Kohji Itoh, The University of Tokushima, Tokushima, Japan; Toya Ohashi, Institute of DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan; and Hitoshi Sakuraba1, Meiji Pharmaceutical University, Tokyo, Japan.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Inventive Approach May Improve Enzyme Replacement Therapy For Fabry Disease." ScienceDaily. ScienceDaily, 24 October 2009. <www.sciencedaily.com/releases/2009/10/091022122323.htm>.
Cell Press. (2009, October 24). Inventive Approach May Improve Enzyme Replacement Therapy For Fabry Disease. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/10/091022122323.htm
Cell Press. "Inventive Approach May Improve Enzyme Replacement Therapy For Fabry Disease." ScienceDaily. www.sciencedaily.com/releases/2009/10/091022122323.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins