Featured Research

from universities, journals, and other organizations

Possible Origins Of Pancreatic Cancer Revealed

Date:
November 12, 2009
Source:
Massachusetts Institute of Technology
Summary:
Cancer biologists have identified a subpopulation of cells that can give rise to pancreatic cancer. They also found that tumors can form in other, more mature pancreatic cell types, but only when they are injured or inflamed, suggesting that pancreatic cancer can arise from different types of cells depending on the circumstances.

MIT cancer biologists have identified a subpopulation of cells that can give rise to pancreatic cancer. They also found that tumors can form in other, more mature pancreatic cell types, but only when they are injured or inflamed, suggesting that pancreatic cancer can arise from different types of cells depending on the circumstances.

There are few good treatment options for pancreatic cancer, which kills an estimated 35,000 Americans per year -- making it the country's fourth-leading cause of cancer death. Learning more about the origins of pancreatic cancer cells could help scientists develop better treatments and tools for early diagnosis.

"By the time pancreatic disease is typically diagnosed, it's already very advanced and non-curable. Our new findings can help scientists focus their drug development efforts and lead them to new ways to detect the disease in early stages," says Sharon Friedlander, a postdoctoral associate at MIT's David H. Koch Institute for Integrative Cancer Research and lead author of a paper describing the work in the Nov. 3 issue of Cancer Cell.

The team found that in mice, tumors originate from a subpopulation of pancreatic cells that express a protein called pdx1. This protein plays a critical role in pancreas development and differentiation, a process of specialization that normally occurs during embryonic development but can also occur later in life. This suggests that under normal conditions, pancreatic cancer may arise from a type of adult stem cell that can differentiate into mature pancreatic cells, says Friedlander.

When the cancer-promoting gene K-ras, commonly activated in tumors, was turned on in the pdx1-expressing cells, they became cancerous. However, mature pancreatic cells, such as insulin-secreting cells, became cancerous only when they expressed K-ras and also suffered from chronic inflammation. Under these conditions, the insulin-secreting cells became another cell type, a condition that appears necessary before they can initiate pancreatic cancer.In future studies, the MIT researchers plan to use their mouse models to follow the molecular events that take place during pancreatic cancer development and identify potential targets for drug treatments and protein markers for early diagnosis. These new mouse models could also help researchers test potential pancreatic cancer treatments.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sharon Gidekel Friedlander, Tyler Jacks, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-ras. Cancer Cell, Nov. 3, 2009

Cite This Page:

Massachusetts Institute of Technology. "Possible Origins Of Pancreatic Cancer Revealed." ScienceDaily. ScienceDaily, 12 November 2009. <www.sciencedaily.com/releases/2009/11/091102121451.htm>.
Massachusetts Institute of Technology. (2009, November 12). Possible Origins Of Pancreatic Cancer Revealed. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/11/091102121451.htm
Massachusetts Institute of Technology. "Possible Origins Of Pancreatic Cancer Revealed." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102121451.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins