Featured Research

from universities, journals, and other organizations

Insights Into The Molecular Basis Of Tumor Cell Behavior

Date:
November 25, 2009
Source:
University of Notre Dame
Summary:
A new study sheds light on the molecular basis by which tumor cells modulate their surroundings to favor cancer progression.

A new study by a team of researchers led by Crislyn D'Souza-Schorey, associate professor of biological sciences at the University of Notre Dame, sheds light on the molecular basis by which tumor cells modulate their surroundings to favor cancer progression.

The study elucidates mechanisms involved in the release of microvesicles -- small membrane enclosed sacs -- from tumor cells that facilitate creation of paths of least resistance allowing tumor cells to migrate. The research offers new insights into how tumor cells invade their surrounding environment and may eventually lead to improved methods for measuring the progression of cancers.

The research paper, which appears this week in an early online edition of the journal Current Biology, identifies a unique population of microvesicles that are enriched in proteases- mediators of tissue degradation. The release of these microvesicles provides a mechanism of tissue breakdown and remodeling at distant sites and is distinct from the better-characterized mechanisms involved in tissue degradation adjacent to the leading edge of tumor cells, D'Souza-Schorey notes.

The new study shows that microvesicle shedding requires localized contraction of the cell's cytoskeleton at sites of microvesicle release and identifies some key regulators involved in the process. One of these critical determinants is the protein ARF6. Understanding the role of the ARF6 protein in cancer progression has been a long standing interest of the D'Souza-Schorey laboratory. Earlier studies from the laboratory using cell and animal tumor models had documented a role of ARF6 in tumor cell invasion.

"Now we now have better insight into the molecular basis by which ARF6 facilitates this process," D'Souza-Schorey said. "Blocking ARF6 activity inhibits microvesicle release and significantly attenuates tumor invasion into surrounding environments. Although our investigations have utilized melanoma and breast tumor cell lines, microvesicle release has been observed in a variety of tumors making this study broadly applicable."

Microvesicles derived from tumor cells also contain other biologically active molecules such as oncogenic receptors and molecules that allow evasion of the immune response. The researchers have now show that specific tumor cell components are selectively targeted to microvesicles, which then function as specialized units that can communicate with or modulate the surrounding environment.

"Studies have shown that once shed, microvesicles can be detected in biological fluids such as blood, urine and ascites and therefore could potentially serve as prognostic and predictive biomarkers for disease progression," D'Souza-Schorey said. "A blood test to monitor the progression of cancer or effectiveness of therapy would be of immense benefit."

Vandhana Chari, a senior postdoctoral researcher in the laboratory is the primary author on the research article. James Clancy, a graduate student and a recipient of Lilly and GLOBES graduate fellowships, and Carolyn Plou, a former undergraduate student researcher, were also part of the research team at Notre Dame involved the study. The research was supported in part by a grant from the National Cancer Institute to D'Souza-Schorey.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Cite This Page:

University of Notre Dame. "Insights Into The Molecular Basis Of Tumor Cell Behavior." ScienceDaily. ScienceDaily, 25 November 2009. <www.sciencedaily.com/releases/2009/11/091105121211.htm>.
University of Notre Dame. (2009, November 25). Insights Into The Molecular Basis Of Tumor Cell Behavior. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/11/091105121211.htm
University of Notre Dame. "Insights Into The Molecular Basis Of Tumor Cell Behavior." ScienceDaily. www.sciencedaily.com/releases/2009/11/091105121211.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins