Featured Research

from universities, journals, and other organizations

How Size Matters For Catalysts: Study Links Size, Activity, Electronic Properties

Date:
November 9, 2009
Source:
University of Utah
Summary:
Chemists have demonstrated the first conclusive link between the size of catalyst particles on a solid surface, their electronic properties and their ability to speed chemical reactions. The study is a step toward the goal of designing cheaper, more efficient catalysts to increase energy production, reduce Earth-warming gases and manufacture a wide variety of goods from medicines to gasoline.

University of Utah chemistry Professor Scott Anderson and doctoral student Bill Kaden work on the elaborate apparatus they use to produce and study catalysts, which are substances that speed chemical reactions without being consumed. The world economy depends on catalysts, and the Utah research is aimed at making cheaper, more efficient catalysts, which could improve energy production and reduce emissions of Earth-warming gases.
Credit: William Kunkel, University of Utah

University of Utah chemists demonstrated the first conclusive link between the size of catalyst particles on a solid surface, their electronic properties and their ability to speed chemical reactions. The study is a step toward the goal of designing cheaper, more efficient catalysts to increase energy production, reduce Earth-warming gases and manufacture a wide variety of goods from medicines to gasoline.

Catalysts are substances that speed chemical reactions without being consumed by the reaction. They are used to manufacture most chemicals and many industrial products. The world's economy depends on them.

"One of the big uncertainties in catalysis is that no one really understands what size particles of the catalyst actually make a chemical reaction happen," says Scott Anderson, a University of Utah chemistry professor and senior author of the study in the Friday, Nov. 6 issue of the journal Science. "If we could understand what factors control activity in catalysts, then we could make better and less expensive catalysts."

"Most catalysts are expensive noble metals like gold or palladium or platinum," he adds. "Say in a gold catalyst, most of the metal is in the form of large particles, but those large particles are inactive and only nanoparticles with about 10 atoms are active. That means more than 90 percent of gold in the catalyst isn't doing anything. If you could make a catalyst with only the right size particles, you could save 90 percent of the cost or more."

In addition, "there's a huge amount of interest in learning how to make catalysts out of much less expensive base metals like copper, nickel and zinc," Anderson says. "And the way you are going to do that is by 'tuning' their chemical properties, which means tuning the electronic properties because the electrons control the chemistry."

The idea is to "take a metal that is not catalytically active and, when you reduce it to the appropriate size [particles], it can become catalytic," Anderson says. "That's the focus of our work -- to try to identify and understand what sizes of metal particles are active as catalysts and why they are active as catalysts."

In the new study, Anderson and his students took a step toward "tuning" catalysts to have desired properties by demonstrating, for the first time, that the size of metal catalyst "nanoparticles" deposited on a surface affects not only the catalyst's level of activity, but the particles' electronic properties.

Anderson conducted the study with chemistry doctoral students Bill Kaden and William Kunkel, and with former doctoral student Tianpin Wu. Kaden was first author.

The Economy Depends on Catalysts

"Catalysts are a huge part of the economy," Anderson says. "Catalysts are used for practically every industrial process, from making gasoline and polymers to pollution remediation and rocket thrusters."

Catalysts are used in 90 percent of U.S. chemical manufacturing processes and to make more than 20 percent of all industrial products, and those processes consume large amounts of energy, according to the U.S. Department of Energy (DOE).

In addition, industry produces 21 percent of U.S. Earth-warming carbon dioxide emissions -- including 3 percent by the chemical industry, DOE says.

Thus, improving the efficiency of catalysts is "the key to both energy savings and carbon dioxide emissions reductions," the agency says.

Catalysts also are used in drug manufacturing; food processing; fuel cells; fertilizer production; conversion of natural gas, coal or biomass into liquid fuels; and systems to reduce pollutants and improve the efficiency of combustion in energy production.

The North American Catalysis Society says catalysts contribute 35 percent or more of global Gross Domestic Product. "The biggest part of this contribution comes from generation of high energy fuels (gasoline, diesel, hydrogen), which depend critically on the use of small amounts of catalysts in … petroleum refineries," the group says.

"The development of inexpensive catalysts … is pivotal to energy capture, conversion and storage," says Henry White, professor and chair of chemistry at the University of Utah. "This research is vital to the energy security of the nation."

Catalyst Research: What Previous Studies and the New Study Showed

Many important catalysts -- such as those in catalytic converters that reduce motor vehicle emissions -- are made of metal particles that range in size from microns (millionths of a meter) down to nanometers (billionths of a meter).

As the size of a catalyst metal particle is reduced into the nanoscale, its properties initially remain the same as a larger particle, Anderson says. But when the size is smaller than about 10 nanometers -- containing about 10,000 atoms of catalyst -- the movements of electrons in the metal are confined, so their inherent energies are increased.

When there are fewer than about 100 atoms in catalyst particles, the size variations also result in fluctuations in the electronic structure of the catalyst atoms. Those fluctuations strongly affect the particles' ability to act as a catalyst, Anderson says.

Previous experiments documented that electronic and chemical properties of a catalyst are affected by the size of catalyst particles floating in a gas. But those isolated catalyst particles are quite different than catalysts that are mounted on a metal oxide surface -- the way the catalyst metal is supported in real industrial catalysts.

Past experiments with catalysts mounted on a surface often included a wide variety of particle sizes. So those experiments failed to detect how the catalyst's chemical activity and electronic properties vary depending with the size of individual particles.

Anderson was the first American chemist to sort metal catalyst particles by size and demonstrate how their reactivity changes with size. In previous work, he studied gold catalyst particles deposited on titanium dioxide.

The new study used palladium particles of specific sizes that were deposited on titanium dioxide and used to convert carbon monoxide into carbon dioxide.

The study not only showed how catalytic activity varies with catalyst particle size, "but we have been able to correlate that size dependence with observed electronic differences in the catalyst particles," Kaden says. "People had speculated this should be happening, but no one has ever seen it."

Anderson says it is the first demonstration of a strong correlation between the size and activity of a catalyst on a metal surface and electronic properties of the catalyst.

How the Study was Conducted

Using an elaborate apparatus in Anderson's laboratory, the chemists aimed a laser beam to vaporize palladium, creating electrically charged, palladium nanoparticles in a vapor carried by a stream of helium gas.

Electromagnetic fields are used to capture the particles and send them through a mass spectrometer, which selects only the sizes of palladium particles Anderson and colleagues want to study. The desired particles then are deposited on a single crystal of titanium oxide that measures less than a half-inch on a side.

Next, the chemists use various methods to characterize the sample of palladium catalyst particles: specifically the palladium catalyst's electronic properties, physical shape and chemical activity.


Story Source:

The above story is based on materials provided by University of Utah. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah. "How Size Matters For Catalysts: Study Links Size, Activity, Electronic Properties." ScienceDaily. ScienceDaily, 9 November 2009. <www.sciencedaily.com/releases/2009/11/091105143712.htm>.
University of Utah. (2009, November 9). How Size Matters For Catalysts: Study Links Size, Activity, Electronic Properties. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/11/091105143712.htm
University of Utah. "How Size Matters For Catalysts: Study Links Size, Activity, Electronic Properties." ScienceDaily. www.sciencedaily.com/releases/2009/11/091105143712.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins