Featured Research

from universities, journals, and other organizations

Scientists Visualize How Bacteria Talk To One Another

Date:
November 8, 2009
Source:
University of California - San Diego
Summary:
Using imaging mass spectrometry, researchers have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their study shows how bacteria talk to one another -- an understanding that may lead to new therapeutic discoveries for diseases ranging from cancer to diabetes and allergies.

Seeing bacteria talk: Shown colored above are molecules used by bacteria to communicate.
Credit: Image courtesy of Pieter C. Dorrestein / University of California - San Diego

Using imaging mass spectrometry, researchers at the University of California, San Diego have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their study shows how bacteria talk to one another -- an understanding that may lead to new therapeutic discoveries for diseases ranging from cancer to diabetes and allergies.

In the paper published in the November 8 issue of Nature Chemical Biology, Pieter C. Dorrestein, PhD, assistant professor at UC San Diego's Skaggs School of Pharmacy and Pharmaceutical Sciences, and colleagues describe an approach they developed to describe how bacteria interface with other bacteria in a laboratory setting. Dorrestein and post-doctoral students Yu-Liang Yang and Yuquan Xu, along with Paul Straight from Texas A&M University, utilized technology called natural product MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) imaging mass spectrometry to uniquely translate the language of bacteria.

Microbial interactions, such as signaling, have generally been considered by scientists in terms of an individual, predominant chemical activity. However, a single bacterial species is capable of producing many bioactive compounds that can alter neighboring organisms. The approach developed by the UCSD research team enabled them to observe the effects of multiple microbial signals in an interspecies interaction, revealing that chemical "conversations" between bacteria involve many signals that function simultaneously.

"Scientists tend to study the metabolic exchange of bacteria, for example penicillin, one molecule at a time," said Dorrestein. "Actually, such exchanges by microbes are much more complex, involving 10, 20 or even 50 molecules at one time. Now scientists can capture that complexity."

The researchers anticipate that this tool will enable development of a bacterial dictionary that translates the output signals. "Our ability to translate the metabolic output of microbes is becoming more important, as they outnumber other cells in our body by a 10 to one margin," Dorrestein explain. "We want to begin to understand how those bacteria interact with our cells. This is a powerful tool that may ultimately aid in understanding these interactions."

In order to communicate, bacteria secrete molecules that tell other microbes, in effect, "I am irritated, stop growing," "I need more nutrients" or "come closer, I can supply you with nutrients." Other molecules are secreted that may turn off the body's defense mechanisms. The team is currently mapping hundreds of such bacterial interactions. Their hope is that this approach will also enable them to translate these bacterial-mediated mechanisms in the future.

Understanding the means by which microorganism cells talk to one another will facilitate therapeutic discovery, according to Dorrestein. For instance, knowing how microbes interact with human immune cells could lead to discovery of novel immune system modulators, and how these molecules control bacterial growth may lead to new anti-invectives. Both are active areas of investigation in his laboratory.

Support was provided by the National Institutes of Health and the Beckman Foundation.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yu-Liang Yang, Yuquan Xu, Paul Straight & Pieter C Dorrestein. Translating metabolic exchange with imaging mass spectrometry. Nature Chemical Biology, 2009; DOI: 10.1038/nchembio.252

Cite This Page:

University of California - San Diego. "Scientists Visualize How Bacteria Talk To One Another." ScienceDaily. ScienceDaily, 8 November 2009. <www.sciencedaily.com/releases/2009/11/091108131436.htm>.
University of California - San Diego. (2009, November 8). Scientists Visualize How Bacteria Talk To One Another. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/11/091108131436.htm
University of California - San Diego. "Scientists Visualize How Bacteria Talk To One Another." ScienceDaily. www.sciencedaily.com/releases/2009/11/091108131436.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins