Featured Research

from universities, journals, and other organizations

Sculptured materials allow multiple channel plasmonic sensors

Date:
November 15, 2009
Source:
Penn State
Summary:
Sensors, communications devices and imaging equipment that use a prism and a special form of light -- a surface plasmon-polariton -- may incorporate multiple channels or redundant applications if manufacturers use sculptured thin films.

Sensors, communications devices and imaging equipment that use a prism and a special form of light -- a surface plasmon-polariton -- may incorporate multiple channels or redundant applications if manufacturers use sculptured thin films.

Related Articles


"Everyone uses surface plasmon resonance sensors. They are a multi billion-dollar industry worldwide," said Akhlesh Lakhtakia, the Charles Godfrey Binder (Endowed) professor of engineering science and mechanics, Penn State. "This type of sensor provides a fairly quick way to see what you have. It can tell you the concentration of chemicals, but in order to test for more than one chemical today, manufacturers have to use more than one sensor."

Surface plasmon resonance devices currently have a wide range of applications. They are commercially used as sensors for humidity, temperature, chemical concentrations and chemical composition. SPR devices can be used in a form of surface microscopy, as wave guides and tunable filters. Creating two or more channels in each device would multiply SPR utility in all areas of application.

Surface plasmon-polaritons are electromagnetic waves that flow along a sandwich of a metal and a dielectric. When light shines through a prism onto the sandwich, electrons form a cloud or plasma in the metal and the molecules of the dielectric get stretched or polarized. Under special conditions, a plasmon-polariton combination forms and moves as a single unit along the sandwich. The formation can be disturbed by the presence of an additional chemical in the dielectric. The disturbance provides the sensing principle. Useful as they are, each sensor can only detect one chemical for each prism and sandwich.

In a series of papers Lakhtakia and his colleagues report on their theoretical and experimental investigation into the possibility of propagating more than one surface plasmon-polariton wave of the same color on a substrate. They recently reported on their experimental work in the Journal of Nanophotonics and the journal Electonic Letters.

The theoretical work indicated that for one wavelength or color of light, it should be possible to generate not just one, but up to three possible plasmon-polaritons if the dielectric used is not a traditional material, but a periodically non-homogeneous sculptured nematic thin film.

"Just because the mathematics suggest three possible surface plasmon-polariton waves does not mean that they can actually all be created," said Lakhtakia. "We had to find someone who could produce the thin films that we needed to test the possibilities experimentally."

Yi-Jun Jen, professor and chair, and Chia-Feng Lin, graduate student, both of the department of electro-optical engineering, National Taipei University of Technology, fabricated the sculptured nematic thin films that were then used in a standard Kretschmann surface plasma resonance sensor configuration. The researchers found that they produced three surface plasmon-polariton waves of light with the same wavelength or color, but with three different speeds. Two of these were polarized in one direction -- p polarized -- and the third was polarized in the other direction -- s polarized.

"This would allow us to test more than two things or to test for the same thing twice in order to reduce sensing errors," said Lakhtakia.

The key to this finding is that sculptured thin films are not the same structure along their thickness. Instead, the pattern of sculpturing does periodically repeat. This periodicity allows the production of two or more surface waves of the same wavelength.

Lakhtakia, working with Devender, an international undergraduate research intern and Drew Patrick Pulsifer, graduated student in engineering science and mechanics, next tried a chiral sculptured thin film. Chiral thin films are similar to periodic sculptured nematic thin films but are like a multitude of parallel corkscrews. Using these thin films the researchers generated two surface plasmon-polaritons waves, but with different speeds, both with p-polarized light.

"If this approach can be optimized and commercialized, there are exciting prospects in store for plasmonic-based sensing, imaging and communications," said Lakhtakia.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Sculptured materials allow multiple channel plasmonic sensors." ScienceDaily. ScienceDaily, 15 November 2009. <www.sciencedaily.com/releases/2009/11/091110171737.htm>.
Penn State. (2009, November 15). Sculptured materials allow multiple channel plasmonic sensors. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/11/091110171737.htm
Penn State. "Sculptured materials allow multiple channel plasmonic sensors." ScienceDaily. www.sciencedaily.com/releases/2009/11/091110171737.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins