Featured Research

from universities, journals, and other organizations

Accidental discovery produces durable new blue pigment for multiple applications

Date:
November 19, 2009
Source:
Oregon State University
Summary:
An accidental discovery has apparently solved a quest that over thousands of years has absorbed the energies of ancient Egyptians, the Han dynasty in China, Mayan cultures and more -- the creation of a near-perfect blue pigment.

An unusual "trigonal bipyramidal coordination" of manganese compounds was used to create a new blue pigment that is safe to produce, durable and environmentally benign.
Credit: Image courtesy of Oregon State University

An accidental discovery in a laboratory at Oregon State University has apparently solved a quest that over thousands of years has absorbed the energies of ancient Egyptians, the Han dynasty in China, Mayan cultures and more -- the creation of a near-perfect blue pigment.

Through much of recorded human history, people around the world have sought inorganic compounds that could be used to paint things blue, often with limited success. Most had environmental or durability issues. Cobalt blue, developed in France in the early 1800s, can be carcinogenic. Prussian blue can release cyanide. Other blue pigments are not stable when exposed to heat or acidic conditions.

But chemists at OSU have discovered new compounds based on manganese that should address all of those concerns. They are safer to produce, much more durable, and should lead to more environmentally benign blue pigments than any being used now or in the past. They can survive at extraordinarily high temperatures and don't fade after a week in an acid bath.

The findings were just published in the Journal of the American Chemical Society, and a patent has been applied for on the composition of the compound and the process used to create it.

"Basically, this was an accidental discovery," said Mas Subramanian, the Milton Harris Professor of Materials Science in the OSU Department of Chemistry. "We were exploring manganese oxides for some interesting electronic properties they have, something that can be both ferroelectric and ferromagnetic at the same time. Our work had nothing to do with looking for a pigment.

"Then one day a graduate student who is working in the project was taking samples out of a very hot furnace while I was walking by, and it was blue, a very beautiful blue," he said. "I realized immediately that something amazing had happened."

What had happened, the researchers said, was that at about 1,200 degrees centigrade -- almost 2,000 degrees Fahrenheit -- this otherwise innocuous manganese oxide turned into a vivid blue compound that could be used to make a pigment able to resist heat and acid, be environmentally benign and cheap to produce from a readily available mineral.

The newest -- and possibly the best -- blue pigment in world history was born, due to manganese ions being structured in an unusual "trigonal bipyramidal coordination" in the presence of extreme heat.

"Ever since the early Egyptians developed some of the first blue pigments, the pigment industry has been struggling to address problems with safety, toxicity and durability," Subramanian said.

The pigment may eventually find uses in everything from inkjet printers to automobiles, fine art or house paint, researchers say.

The scientists said in their journal article that the new compound yields "a surprisingly intense and bright blue color," and they have outlined its structure and characteristics in detail. Collaborating on the work were researchers in the Materials Department at the University of California/Santa Barbara.

"A lot of the most interesting discoveries are not really planned, we've seen that throughout history," Subramanian said. "There is luck involved, but I also teach my students that you have to stay alert to recognize something when it happens, even if it isn't what you were looking for."

"Luck favors the alert mind."

The research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "Accidental discovery produces durable new blue pigment for multiple applications." ScienceDaily. ScienceDaily, 19 November 2009. <www.sciencedaily.com/releases/2009/11/091116143621.htm>.
Oregon State University. (2009, November 19). Accidental discovery produces durable new blue pigment for multiple applications. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/11/091116143621.htm
Oregon State University. "Accidental discovery produces durable new blue pigment for multiple applications." ScienceDaily. www.sciencedaily.com/releases/2009/11/091116143621.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins