Featured Research

from universities, journals, and other organizations

Inflammation critical in aortic dissection, researchers find

Date:
November 20, 2009
Source:
University of Texas Medical Branch at Galveston
Summary:
Researchers have found biochemical processes that chip away at the aorta causing aortic dissection.

The aorta, the body's largest artery, stretches from the chest to below the kidneys, expanding and contracting with the pressure of blood driven directly into it by the heart. Although its walls are extraordinarily strong, like other blood vessels the aorta can sometimes develop bulges, called aneurysms. Like other aneurysms, those in the aorta sometimes give way, and the result is what doctors refer to as an "aortic dissection" -- a clinical way of saying that the largest artery in your body has just started leaking, and you may well be on your way to becoming one of the nearly 16,000 Americans killed by the phenomenon annually.

Related Articles


Aortic dissection has traditionally been viewed as a simple structural failure, albeit one with poorly understood causes. Certain genetic diseases, such as Marfan syndrome, have been directly linked to the condition; the actor John Ritter inherited a different genetic defect that contributed to his sudden death from aortic dissection in 2003. But the mechanisms that turn a worrisome aortic aneurysm into a catastrophic aortic dissection have remained mysterious.

Now, though, University of Texas Medical Branch at Galveston researchers have uncovered what seem to be the key biochemical processes that chip away at the aorta from within until it finally tears. In a paper to be published online Nov. 16 in the Journal of Clinical Investigation, the UTMB investigators present evidence that implicates inflammatory processes centered on the signaling molecule interleukin-6 in producing the disastrous aortic weakening.

"We found that inflammation is critical in aortic dissection, and IL-6 -- which has been recognized for years as a marker of inflammation and also an important cardiovascular risk factor -- plays the central role in the process," said UTMB professor Allan Brasier, senior author of the study. "Without it, you don't have dissection."

The UTMB team -- graduate students Brian C. Tieu and Xiaoxi Ju, research associates Chang Lee, Hong Sun and Wanda LeJeune, assistant professors Adrian Recinos and Heidi Spratt and professor Ronald Tilton -- arrived at its conclusions through experiments with mice and work with human samples provided by their collaborators and co-authors at the University of Texas Health Science Center at Houston, assistant professor Dong-Chuan Guo and professor Dianna Milewicz.

To profile the inflammatory attack that produces aortic dissection, Brasier's group injected the hormone angiotensin into both ordinary lab mice and those genetically modified to "knock out" IL-6 or a cellular receptor for another molecule also involved, known as MCP-1. The human samples, used to substantiate a link between the mouse findings and human disease, came from volunteers undergoing surgical aortic dissection repair without a family history of the disease.

"Angiotensin is a blood-pressure regulating hormone -- people who have what we call essential high blood pressure have increased production of angiotensin, and it's the target for anti-hypertension therapies," Brasier said. "What we've found in earlier studies is that it has an inflammatory role as well, causing cells in blood vessel walls to produce IL-6 as well as MCP-1. And this study showed us that MCP-1 helps recruit monocytes [a type of white blood cell] to the vessel where IL-6 activates them."

Playing host to a large number of cells meant for immune defense is bad news for an aorta already strained by an aneurysm, since activated white blood cells produce proteins that destabilize the structure of the vessel. At the same time, signals produced by the activated white blood cells encourage the blood vessel to generate more IL-6.

"Our data suggest that interleukin-6 and MCP-1 secretion are codependent -- without interleukin-6 you get less MCP-1," Brasier said. "But with interleukin-6 it's like throwing more gasoline on the fire, you keep bringing in still more monocytes and activating them, amplifying the effect."

A similar feedback loop kicked into action when human monocytes and cells grown from the human aortic dissection samples were brought together, generating both IL-6 and MCP-1. Once again, though, removing IL-6 damped the response. And microscopic studies of human aortic dissection samples showed substantial levels of IL-6 in the same layer of the aortic wall where the inflammatory molecules were most densely concentrated in mice.

"Our collaboration with the UT-Houston group allowed us to make an important translational linkage between using a mouse model and validating our model by seeing interleukin-6 in human sporadic aortic dissections," Brasier said. "I think this kind of team-oriented collaboration is a model to make significant clinically relevant discoveries in the future."

The National Heart Lung and Blood Institute, the National Institute of Environmental Health Sciences and the James W. McLaughlin Fellowship Fund supported this research.


Story Source:

The above story is based on materials provided by University of Texas Medical Branch at Galveston. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Medical Branch at Galveston. "Inflammation critical in aortic dissection, researchers find." ScienceDaily. ScienceDaily, 20 November 2009. <www.sciencedaily.com/releases/2009/11/091116173202.htm>.
University of Texas Medical Branch at Galveston. (2009, November 20). Inflammation critical in aortic dissection, researchers find. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/11/091116173202.htm
University of Texas Medical Branch at Galveston. "Inflammation critical in aortic dissection, researchers find." ScienceDaily. www.sciencedaily.com/releases/2009/11/091116173202.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins