Featured Research

from universities, journals, and other organizations

Advanced nuclear fuel sets global performance record

Date:
November 18, 2009
Source:
DOE/Idaho National Laboratory
Summary:
Scientists have set a new world record with next-generation particle fuel for use in high temperature gas reactors (HTGRs).

The fuel pellets contain a kernel of enriched uranium surrounded by carbon and carbide layers that act as a containment boundry for the radioactive material.
Credit: Image courtesy of DOE/Idaho National Laboratory

Idaho National Laboratory (INL) scientists have set a new world record with next-generation particle fuel for use in high temperature gas reactors (HTGRs).

The Advanced Gas Reactor (AGR) Fuel Program, initiated by the Department of Energy in 2002, used INL's unique Advanced Test Reactor (ATR) in a nearly three-year experiment to subject more than 300,000 nuclear fuel particles to an intense neutron field and temperatures around 1,250 degrees Celsius.

INL researchers say the fuel experiment set the record for particle fuel by consuming approximately 19 percent of its low-enriched uranium -- more than double the previous record set by similar experiments run by German scientists in the 1980s and more than three times that achieved by current light water reactor (LWR) fuel. Additionally, none of the fuel particles experienced failure since entering the extreme neutron irradiation test environment of the ATR in December 2006.

"This level of performance is a major accomplishment," said Dr. David Petti, Director of the Very High Temperature Reactor Technology Development Office at the U.S. Department of Energy's INL. The purpose of the fuel program is to develop this particle fuel, produce experimental data that demonstrates to the Nuclear Regulatory Commission that the fuel is robust and safe, and re-establish a U.S. fuel manufacturing capability for high temperature gas reactors. INL has been working with Babcock and Wilcox Inc., General Atomics and Oak Ridge National Laboratory (ORNL) to establish standards and procedures for the manufacture of commercial-scale HTGR fuel. The overarching goal of the AGR Fuel Program is to qualify coated nuclear fuel particles for use in HTGRs such as the Next Generation Nuclear Plant (NGNP). Developing particle fuel capable of achieving very high burnup levels will also reduce the amount of used fuel that is generated by HTGRs.

"An important part of our mission is the development and exploration of advanced nuclear science and technology," said Dr. Warren F. "Pete" Miller, assistant secretary for Nuclear Energy. "This achievement is an important step as we work to enable the next generation of reactors, decrease fossil fuel use in industrial applications, make fuel cycles more sustainable, and reduce proliferation risks."

"AGR-1" is the first of eight similar experiments which aim to confirm designs and fabrication processes and performance characteristics for such fuel. Future AGR fuel tests will include particle fuel produced on a prototypic industrial scale to further prove the irradiation performance of the NGNP-specific fuel design. The 18-foot-long AGR-1 experiment was inserted in INL's ATR core and allowed for each of six capsules containing the particle fuel specimens to be monitored and controlled separately. Inside the ATR core, the fuel specimens were subjected to neutron irradiation many times higher than what they would experience inside an HTGR or a current light water reactor, allowing INL researchers to gain irradiation performance data for nuclear fuel and materials in a shorter time. The team is monitoring the AGR fuel for a number of factors including "burn-up," which is a measurement of the percent of uranium fuel that has undergone fission reactions.

Although the experiment has now left the ATR, researchers still have more work to do before the AGR-1 test campaign will be finished. Post irradiation examination (PIE) will begin at INL and ORNL facilities and allow scientists to examine the fuel up close so that the fuel and its layers of coatings can be evaluated for degradation patterns and other characteristics. In addition, controlled higher temperature testing in furnaces is planned to determine the safety performance of the fuel under postulated accident conditions. These activities will last another two years.

The Next Generation Nuclear Plant Program aims to use a high temperature gas reactor to produce high temperature process heat and hydrogen used by many industrial facilities in daily operations and to support the broader goal of developing the next generation of nuclear power systems that provide abundant carbon-free electricity on a 24/7 basis. Excellent fuel irradiation performance must be demonstrated before high temperature gas reactors can be licensed and co-located with these complementary industrial facilities. Reaching this world record peak burn-up of 19 percent without any particle failure demonstrates the robustness of this particle fuel design.


Story Source:

The above story is based on materials provided by DOE/Idaho National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Idaho National Laboratory. "Advanced nuclear fuel sets global performance record." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/11/091117094829.htm>.
DOE/Idaho National Laboratory. (2009, November 18). Advanced nuclear fuel sets global performance record. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2009/11/091117094829.htm
DOE/Idaho National Laboratory. "Advanced nuclear fuel sets global performance record." ScienceDaily. www.sciencedaily.com/releases/2009/11/091117094829.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins