Featured Research

from universities, journals, and other organizations

Predicting the effectiveness of metal catalysts

Date:
November 27, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Catalysis is a process that is widely used in industry to synthesize molecules or materials. However, determining catalytic mechanisms is a major challenge for modern chemistry. Researchers have now used numerical simulation methods to show how the selectivity of reaction mechanisms at the surface of a metal catalyst can be understood far more simply.

Catalysis is a process that is widely used in industry to synthesize molecules or materials. However, determining catalytic mechanisms is a major challenge for modern chemistry. Researchers at the Laboratoire de Chimie de Lyon (CNRS / Ecole normale supérieure de Lyon) have used numerical simulation methods to show how the selectivity of reaction mechanisms at the surface of a metal catalyst can be understood far more simply.

This discovery marks an important step forward in the identification of competitive catalytic mechanisms and therefore in the design of innovative, cheaper and cleaner processes. The results are published in the 9 November 2009 issue of the journal Angewandte Chemie International Edition.

In industry, catalysis is used for the synthesis of plastics, drugs, cosmetics and fuels. Catalysts not only accelerate chemical reactions, but can also be used to drive them along pathways through possible reaction networks, thus getting more efficiently to the desired product while avoiding undesirable by-products. In this way, controlling the reaction mechanisms of a catalyst, according to its nature and structure, enables the reaction to be directed towards the desired compound. In order to identify these mechanisms, intensive computations are needed to determine the energy barriers involved, which are associated with the identification of transition states, intermediate points on the synthetic pathway of a product.

This method is therefore currently limited to simple reaction schemes. In order to synthesize more complex molecules of use to society, such as drugs, the number of possible reaction networks rapidly becomes very great, and an exhaustive exploration of the associated mechanisms is almost impossible. The selectivity of the reaction (ie the pathway that will be followed) is therefore extremely difficult to understand and to control.

The researchers showed that the activation energy for one step in a series of catalytic reactions can be predicted by simply calculating the bond energy between the reactants and the surface of the catalyst, which is a much simpler quantity to evaluate than the energies of transition states. The reaction they studied was the interaction between hydrogen and an organic compound on a platinum surface. This molecule contains four possible sites for the reaction, which leads to a complex network of 32 elementary steps that need to be considered in the mechanism.

How does the catalyst drive the reaction through this maze? The researchers showed that, for each set of steps related to a reactive site, there is a correlation between the activation cost of conversion and the bond energy of the reactants at the surface just before the reaction occurs. Besides its simplicity, the correlation found provides especially reliable predictions that can be extended to a wide family of organic molecules.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Predicting the effectiveness of metal catalysts." ScienceDaily. ScienceDaily, 27 November 2009. <www.sciencedaily.com/releases/2009/11/091117192400.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, November 27). Predicting the effectiveness of metal catalysts. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/11/091117192400.htm
CNRS (Délégation Paris Michel-Ange). "Predicting the effectiveness of metal catalysts." ScienceDaily. www.sciencedaily.com/releases/2009/11/091117192400.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins