Featured Research

from universities, journals, and other organizations

Proton's party pals may alter its internal structure

Date:
November 20, 2009
Source:
DOE/Thomas Jefferson National Accelerator Facility
Summary:
A recent experiment has found that a proton's nearest neighbors in the nucleus of the atom may modify the proton's internal structure.

Visualization of helium-4 and beryllium nuclei.
Credit: Peter Mueller (Argonne National Lab)

A recent experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility has found that a proton's nearest neighbors in the nucleus of the atom may modify the proton's internal structure.

When comparing large nuclei to small nuclei, past measurements have shown a clear difference in how the proton's constituent particles, called quarks, are distributed. This difference is called the EMC Effect.

Many models of the EMC Effect predict that it is caused by the mass or density of the nucleus in which the proton resides. To test these predictions, experimenters made precise new measurements of the EMC effect in a variety of light nuclei, such as isotopes of helium.

"What we found is that there is a large modification of the quark structure in helium-4, and there was a much smaller effect in helium-3. And even though they were both light nuclei, they had a very different EMC Effect," said John Arrington, a spokesperson for the experiment and a nuclear physicist at DOE's Argonne National Lab.

The results, Arrington added, rules out the idea that the size of the EMC effect scales with the mass of the nucleus.

Next, the experimenters turned their attention to density. They compared the EMC Effect in beryllium to various other nuclei. Beryllium has a mass similar to carbon but a much lower density, roughly the same as helium-3. They found that the size of the EMC Effect in beryllium is similar to that of carbon, which is twice as dense.

"So you have one set of data that tells you the mass-dependence picture doesn't work and another that tells you the density-dependence picture doesn't work," Arrington explained. "So, if both of these pictures are wrong, what's really going on?"

Interestingly, the result did indicate a possible new cause for the effect: the microscopic structure of nuclei. This possible result is hinged on the unusual structure of beryllium. Most of the time, beryllium's configuration consists of two orbiting clusters that look like helium-4 nuclei (each with two protons and two neutrons), and one additional neutron orbiting around.

The orbiting clusters yield a large radius and a low average density for the beryllium nucleus, but most protons and neutrons are contained within the high local densities of the clusters. This suggests that the EMC effect may be entirely generated within these small, high-density clusters.

"That's a hypothesis, but it's certainly clear that it's small groups of nucleons that get together and change things, rather than the whole collection," Arrington said. "In a way, it's not really surprising. If you're at a party, it doesn't matter how many people are in the room, most of the time you're interacting with the people that you're closest to."

Arrington says the next step is to take a new measurement that directly examines the impact of the local density. This can be done by looking at the quark structure of the deuteron, a nucleus consisting of just one proton and one neutron. Most of the time, the proton and neutron are pretty far apart.

"We want to isolate the quark structure during the moment when the proton and neutron are very close together. If we find a large effect in such a small and simple nucleus by looking when the proton and neutron are closest together, it will demonstrate that the EMC effect does not require a large, dense nucleus -- it simply requires two nucleons coming into extremely close contact," Arrington explained.

The experiment, E03-103, ran for 21 days in Hall C in October of 2004. It measured the momenta of protons knocked out of the nuclei of hydrogen, helium, beryllium and carbon atoms by electrons from the CEBAF Accelerator.

This work was supported in part by the DOE, the National Science Foundation and the South African National Research Foundation.


Story Source:

The above story is based on materials provided by DOE/Thomas Jefferson National Accelerator Facility. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Thomas Jefferson National Accelerator Facility. "Proton's party pals may alter its internal structure." ScienceDaily. ScienceDaily, 20 November 2009. <www.sciencedaily.com/releases/2009/11/091118181243.htm>.
DOE/Thomas Jefferson National Accelerator Facility. (2009, November 20). Proton's party pals may alter its internal structure. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/11/091118181243.htm
DOE/Thomas Jefferson National Accelerator Facility. "Proton's party pals may alter its internal structure." ScienceDaily. www.sciencedaily.com/releases/2009/11/091118181243.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) — Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) — Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) — The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins