Featured Research

from universities, journals, and other organizations

Auditory illusion: How our brains can fill in the gaps to create continuous sound

Date:
November 27, 2009
Source:
Cell Press
Summary:
It is relatively common for listeners to "hear" sounds that are not really there. In fact, it is the brain's ability to reconstruct fragmented sounds that allows us to successfully carry on a conversation in a noisy room.

It is relatively common for listeners to "hear" sounds that are not really there. In fact, it is the brain's ability to reconstruct fragmented sounds that allows us to successfully carry on a conversation in a noisy room. Now, a new study helps to explain what happens in the brain that allows us to perceive a physically interrupted sound as being continuous. The research, published by Cell Press in the November 25 issue of Neuron provides fascinating insight into the constructive nature of human hearing.

"In our day-to-day lives, sounds we wish to pay attention to may be distorted or masked by background noise, which means that some of the information gets lost. In spite of this, our brains manage to fill in the information gaps, giving us an overall 'image' of the sound," explains senior study author, Dr. Lars Riecke from the Department of Cognitive Neuroscience at Maastricht University in The Netherlands. Dr. Riecke and colleagues were interested in unraveling the neural mechanisms associated with this auditory continuity illusion, where a physically interrupted sound is heard as continuing through background noise.

The researchers investigated the timing of sensory-perceptual processes associated with the encoding of physically interrupted sounds and their auditory restoration, respectively, by combining behavioral measures where a participant rated the continuity of a tone, with simultaneous measures of electrical activity in the brain. Interestingly, slow brain waves called theta oscillations, which are involved in encoding boundaries of sounds, were suppressed during an interruption in a sound when that sound was illusorily restored. "It was as if a physically uninterrupted sound was encoded in the brain," says Dr. Riecke. This restoration-related suppression was most obvious in the right auditory cortex.

Taken together, the findings reveal a novel mechanism that enhances our understanding of the constructive nature of human hearing. "Our results revealed that spontaneous modulations in slow evoked auditory cortical oscillations may determine the perceived continuity of fragmented sounds in noise," concludes Dr. Riecke. Interestingly, the suppressive effect was present before an illusorily filled gap and reached maximum shortly after the gap's actual onset, suggesting that the mechanism may work rapidly or anticipatorily and thereby facilitate stable hearing of fragmented sounds in natural environments. The authors also suggest that their results might inspire future design of devices to assist people with hearing deficits.

The researchers include Lars Riecke, Maastricht University, Maastricht, The Netherlands; Fabrizio Esposito, Maastricht University, Maastricht, The Netherlands, University of Naples, Naples, Italy; Milene Bonte, Maastricht University, Maastricht, The Netherlands; and Elia Formisano, of Maastricht University, Maastricht, The Netherlands.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Auditory illusion: How our brains can fill in the gaps to create continuous sound." ScienceDaily. ScienceDaily, 27 November 2009. <www.sciencedaily.com/releases/2009/11/091125134655.htm>.
Cell Press. (2009, November 27). Auditory illusion: How our brains can fill in the gaps to create continuous sound. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2009/11/091125134655.htm
Cell Press. "Auditory illusion: How our brains can fill in the gaps to create continuous sound." ScienceDaily. www.sciencedaily.com/releases/2009/11/091125134655.htm (accessed August 23, 2014).

Share This




More Mind & Brain News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins