Featured Research

from universities, journals, and other organizations

Engineers and doctors develop novel material that could help fight arterial disease

Date:
November 26, 2009
Source:
University of California - Los Angeles
Summary:
Scientists are working to develop a device to treat peripheral arterial disease that could prevent thrombosis from occurring in small diameter vessels.

A fortuitous discovery that grew out of a collaboration between UCLA engineers and physicians could potentially offer hope to the nearly 10 million Americans who suffer from peripheral arterial disease.

Also known as hardening of the arteries, peripheral arterial disease, or PAD, is a common circulatory problem in which narrowed arteries reduce blood flow to the limbs. The condition is considered a red flag for vascular disease, heart attack and stroke, and its progression can result in the loss of limbs or death.

While there are currently several treatments for PAD, including balloon angioplasty, stenting and bypass surgery, devices used in the latter two can frequently cause thrombosis, in which clots form inside blood vessels, obstructing blood flow and leading to serious complications.

Now, a team from the UCLA Henry Samueli School of Engineering and Applied Science, in collaboration with researchers from the David Geffen School of Medicine at UCLA, is working to develop a PAD treatment device that can prevent thrombosis in small-diameter blood vessels.

Their research centers on stents that incorporate a material known as Nitinol, a superelastic nickel and titanium alloy that has the ability to be deformed and to recover its original shape upon heating.

In recognition of the potential of the research, the National Institutes of Health's National Heart, Lung and Blood Institute recently awarded the team a $1 million Challenge Grant.

"What we've been doing at UCLA for the last five to 10 years now is working with thin-film Nitinol," said Greg Carman, a professor of mechanical and aerospace engineering and lead investigator for the multidisciplinary research team, which was organized under the umbrella of the UCLA Center for Advanced Surgical and Interventional Technologies.

"Nitinol, discovered back in the 1960s, is a shape-memory material. They thought it was going to revolutionize the engineering field. It wasn't until 1985 that people began to think this material would probably be great to use in a stent," Carman said. "The reason they liked it for a stent is because you could bend the material a very large distance and it would return back to its original shape. Other metals, such as surgical steel, do not allow such a large shape recovery and, as such, cannot be used in many stenting devices."

In the early 2000s, Carman's group started looking into making thin-film Nitinol and accidently stumbled across a way to fabricate what they believed was very high-quality, uniform-composition Nitinol.

"That's when we started producing thin-film Nitinol. We weren't sure where the applications for this novel, very low-profile material would go until we ran into someone in the medical school," Carman said.

"I immediately saw the promise that thin-film Nitinol had for intravascular and cardiac applications," said Dr. Daniel Levi, a pediatric cardiologist at Mattel Children's Hospital UCLA and a principal investigator on the team. "Greg and I started working together immediately on stents and a heart valve."

Carman and Levi's team looked into producing stents that incorporated thin-film Nitinol on the exterior. Originally, the team considered it a possible treatment for neural vascular disease. They then discovered that their thin-film Nitinol, at only 5 microns thick -- compared to commercial stents, with a covering 100 microns thick -- could be placed into much smaller tubes or catheters and used on much smaller-diameter blood vessels, like those found in limbs.

While this was a boon to treatment delivery, the main concern with PAD treatment was thrombosis. During testing, the team soon discovered their new stent possessed several attributes that could combat thrombosis.

When a blood vessel is injured, the body uses blood platelets to form clots as a first step in repair and to prevent further blood loss. Initially, the researchers found that blood clots formed on the surface of the thin-film Nitinol they tested in animals. But a student of Carman's, Youngjae Chun, reviewed the literature and discovered that the thrombosis might be related to the hydrophobic nature of the material's surface. He measured the film and found it to be slightly hydrophobic.

"Hydrophobic means when you put a drop of water on a surface, it beads up like water on a freshly waxed car," Carman said. "This is typically undesirable in reducing thrombosis. We wanted it to be hydrophilic, the opposite of hydrophobic."

The team began an elaborate study, exploring various treatments that would modify the surface structure of the thin-film Nitinol. During one test, Chun discovered a treatment that produced not just a hydrophilic response but a super-hydrophilic response, meaning the wetting angle goes to zero and there are no water beads on the surface.

The team conducted in vitro studies to see if platelets would adhere to the surface of their new chemically treated material. The tests were a success: Virtually no platelets adhered.

But they also realized that in vitro testing alone wouldn't convince the medical community that their material was definitely non-thrombogenic.

"With the Challenge Grant, we are beginning to do tests in animals again and have already seen that our film does remain patent," Carman said. "It's our understanding that very few, if any, covered stents out there that are put into 3- or 4- millimeter vessels will remain patent. We need to show with statistical relevance that our material stays patent longer than other systems commercially on the market. If we can do that, we would have something that could impact the world quite dramatically.

"While we are very optimistic it will work, we also understand that biology does not always behave how you would like it to. All of our results to date point to a very promising conclusion."

"At this point, we need to deploy the stent grafts and have them stay open," said Dr. David Rigberg, a vascular surgeon at the Geffen School of Medicine and the third principle investigator on the team. "We also want to see that under examination many of the things that we look at to determine if something is going to thrombose are decreased. I think the study has a real shot at clinical application."

"PAD is a huge problem," Levi said. "The ability to produce an advance in this field would help millions of Americans. Clearly, the potential impact is the most exciting aspect of the project. As a pediatric cardiologist, I hope that similar thin-film technology will produce stents that can benefit adults with coronary disease and children with pulmonary venous and arterial disease."

Funding for the two-year Challenge Grant comes from the American Recovery and Reinvestment Act of 2009. The NIH has identified a range of challenge areas that focus on specific knowledge gaps, scientific opportunities, new technologies, data generation and research methods that could benefit significantly from an influx of funds. The research in these challenge areas, according to the NIH, should have a high impact on biomedical or behavioral science or public health.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Engineers and doctors develop novel material that could help fight arterial disease." ScienceDaily. ScienceDaily, 26 November 2009. <www.sciencedaily.com/releases/2009/11/091126083424.htm>.
University of California - Los Angeles. (2009, November 26). Engineers and doctors develop novel material that could help fight arterial disease. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/11/091126083424.htm
University of California - Los Angeles. "Engineers and doctors develop novel material that could help fight arterial disease." ScienceDaily. www.sciencedaily.com/releases/2009/11/091126083424.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins