Featured Research

from universities, journals, and other organizations

Nuclear waste reduction: Polymers designed to mop up radioactive isotopes

Date:
November 28, 2009
Source:
Technische Universitaet Dortmund
Summary:
Nuclear power could solve our energy problems but it has rather nasty by-products: radioactive waste. Not only the disposal of the old core rods but also reactor operation results in a large amount of low-level waste, especially contaminated cooling water. Scientists have now developed a new method to reduce the amount of this radioactive waste considerably. They use small beads consisting of a special polymer which “fishes” the radioactivity out of the water.

Nuclear power could solve our energy problems but it has rather nasty by-products: radioactive waste. Not only the disposal of the old core rods but also reactor operation results in a large amount of low-level waste, especially contaminated cooling water.

Related Articles


Together with his colleague Sevilimendu Narasimhan from the Bhabha Atomic Research Center in Kalpakkam, India, the chemist PD Dr. Bφrje Sellergren from the Institute of Environmental Research at Technische Universitδt Dortmund has developed a new method to reduce the amount of this radioactive waste considerably. His approach: small beads consisting of a special polymer which "fishes" the radioactivity out of the water.

In pressurized-water reactors, the most common reactor, hot water circulates at high pressure through the steel pipes, dissolving metal ions from the walls of the pipes. When the water is pumped through the reactor's core, these ions are bombarded by neutrons.

Because the pipes are steel pipes, most of the ions are common iron-isotopes (56 Fe), which don't become radioactive when bombarded by neutrons. But the steel in the pipes is usually alloyed with cobalt. And when this cobalt absorbs neutrons, an instable cobalt-isotope (60 Co) emerges which is radioactive with a half-life of more than five years.

Usually the water is cleaned with ion exchangers. But this technique has a crucial disadvantage, because it doesn't differentiate between non-radioactive iron-ions and radioactive cobalt-ions.

To overcome this problem, Sellergren and Narasimhan were looking for a material which binds cobalt and not iron. They developed a special polymer which is made through a procedure called "molecular imprinting." This polymer is made in an environment containing cobalt. Then the cobalt-ions are extracted with hydrochloric acid, meaning that they are virtually "washed out." The resulting cobalt-sized holes -- the imprinting -- are able to trap cobalt -- and just cobalt -- in other environments. The result: a small amount of this polymer can mop up a large amount of radioactive isotopes.

The team is now forming the polymer into small beads that can pass through the cooling system of a nuclear-power station. They expect that it would be more economical and environment-friendly to concentrate radioactivity into such beads than to dispose of large amounts of low-level waste. There obviously is a demand. Some 40 new nuclear-power stations are being built around the world. And the International Atomic Energy Agency estimates that a further 70 will be built in the next 15 years.


Story Source:

The above story is based on materials provided by Technische Universitaet Dortmund. Note: Materials may be edited for content and length.


Cite This Page:

Technische Universitaet Dortmund. "Nuclear waste reduction: Polymers designed to mop up radioactive isotopes." ScienceDaily. ScienceDaily, 28 November 2009. <www.sciencedaily.com/releases/2009/11/091127123921.htm>.
Technische Universitaet Dortmund. (2009, November 28). Nuclear waste reduction: Polymers designed to mop up radioactive isotopes. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2009/11/091127123921.htm
Technische Universitaet Dortmund. "Nuclear waste reduction: Polymers designed to mop up radioactive isotopes." ScienceDaily. www.sciencedaily.com/releases/2009/11/091127123921.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins