Featured Research

from universities, journals, and other organizations

New brain connections form rapidly during motor learning

Date:
November 30, 2009
Source:
University of California - Santa Cruz
Summary:
New connections begin to form between brain cells almost immediately as animals learn a new task, according to a study in which researchers observed the rewiring processes that take place in the brain during motor learning.

New connections begin to form between brain cells almost immediately as animals learn a new task, according to a new study.
Credit: iStockphoto

New connections begin to form between brain cells almost immediately as animals learn a new task, according to a study published recently in Nature. Led by researchers at the University of California, Santa Cruz, the study involved detailed observations of the rewiring processes that take place in the brain during motor learning.

The researchers studied mice as they were trained to reach through a slot to get a seed. They observed rapid growth of structures that form connections (called synapses) between nerve cells in the motor cortex, the brain layer that controls muscle movements.

"We found very quick and robust synapse formation almost immediately, within one hour of the start of training," said Yi Zuo, assistant professor of molecular, cell and developmental biology at UCSC.

Zuo's team observed the formation of structures called "dendritic spines" that grow on pyramidal neurons in the motor cortex. The dendritic spines form synapses with other nerve cells. At those synapses, the pyramidal neurons receive input from other brain regions involved in motor memories and muscle movements. The researchers found that growth of new dendritic spines was followed by selective elimination of pre-existing spines, so that the overall density of spines returned to the original level.

"It's a remodeling process in which the synapses that form during learning become consolidated, while other synapses are lost," Zuo said. "Motor learning makes a permanent mark in the brain. When you learn to ride a bicycle, once the motor memory is formed, you don't forget. The same is true when a mouse learns a new motor skill; the animal learns how to do it and never forgets."

Understanding the basis for such long-lasting memories is an important goal for neuroscientists, with implications for efforts to help patients recover abilities lost due to stroke or other injuries.

"We initiated the motor learning studies to understand the process that takes place after a stroke, when patients have to relearn how to do certain things. We want to find out if there are things we can do to speed up the recovery process," Zuo said.

The lead authors of the Nature paper, Tonghui Xu and Xinzhu Yu, are a postdoctoral researcher and doctoral student, respectively, in Zuo's lab at UCSC. Coauthors include Andrew Perlik, Willie Tobin, and Jonathan Zweig of UCSC and Kelly Tennant and Theresa Jones of the University of Texas, Austin.

The study used mice that had been genetically altered to make a fluorescent protein within certain neurons in the brain. The researchers were then able to use a special microscopy technique (two-photon microscopy) to obtain clear images of those neurons near the surface of the brain. The noninvasive imaging technique enabled them to view changes in individual brain cells of the mice before, during, and after the mice were trained in the seed-reaching task.

"We were able to follow the same synapses over time, which had not been done before in a motor learning study," Zuo said. "We showed that structural changes occur in the brain at a much earlier stage than people had believed."

Results from the study suggested that the newly formed dendritic spines are initially unstable and undergo a prolonged selection process during the course of training before being converted into stable synapses.

When previously trained mice were reintroduced to the reaching task four months later, their skill at the task remained high, and images of their brains did not show increased spine formation. When previously trained mice were taught a new skill, however, they showed enhanced spine formation and elimination similar to that seen during the initial training. Furthermore, spines that had formed during the initial training persisted after the remodeling process that accompanied the learning of a new task.

These findings suggest that different motor behaviors are stored using different sets of synapses in the brain, Zuo said. One of the questions she would like to explore in future studies is how these findings apply to different types of learning.

"In China, where I grew up, we memorize a lot in school. What are the changes that take place in the brain during learning and memorizing, and what are the best ways to consolidate those memories? We don't really know the best way to learn and memorize," she said.

This work was supported by grants from the Ellison Medical Foundation, the DANA Foundation, and the National Institute on Aging.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "New brain connections form rapidly during motor learning." ScienceDaily. ScienceDaily, 30 November 2009. <www.sciencedaily.com/releases/2009/11/091129153359.htm>.
University of California - Santa Cruz. (2009, November 30). New brain connections form rapidly during motor learning. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/11/091129153359.htm
University of California - Santa Cruz. "New brain connections form rapidly during motor learning." ScienceDaily. www.sciencedaily.com/releases/2009/11/091129153359.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins