Featured Research

from universities, journals, and other organizations

New brain connections form rapidly during motor learning

Date:
November 30, 2009
Source:
University of California - Santa Cruz
Summary:
New connections begin to form between brain cells almost immediately as animals learn a new task, according to a study in which researchers observed the rewiring processes that take place in the brain during motor learning.

New connections begin to form between brain cells almost immediately as animals learn a new task, according to a new study.
Credit: iStockphoto

New connections begin to form between brain cells almost immediately as animals learn a new task, according to a study published recently in Nature. Led by researchers at the University of California, Santa Cruz, the study involved detailed observations of the rewiring processes that take place in the brain during motor learning.

The researchers studied mice as they were trained to reach through a slot to get a seed. They observed rapid growth of structures that form connections (called synapses) between nerve cells in the motor cortex, the brain layer that controls muscle movements.

"We found very quick and robust synapse formation almost immediately, within one hour of the start of training," said Yi Zuo, assistant professor of molecular, cell and developmental biology at UCSC.

Zuo's team observed the formation of structures called "dendritic spines" that grow on pyramidal neurons in the motor cortex. The dendritic spines form synapses with other nerve cells. At those synapses, the pyramidal neurons receive input from other brain regions involved in motor memories and muscle movements. The researchers found that growth of new dendritic spines was followed by selective elimination of pre-existing spines, so that the overall density of spines returned to the original level.

"It's a remodeling process in which the synapses that form during learning become consolidated, while other synapses are lost," Zuo said. "Motor learning makes a permanent mark in the brain. When you learn to ride a bicycle, once the motor memory is formed, you don't forget. The same is true when a mouse learns a new motor skill; the animal learns how to do it and never forgets."

Understanding the basis for such long-lasting memories is an important goal for neuroscientists, with implications for efforts to help patients recover abilities lost due to stroke or other injuries.

"We initiated the motor learning studies to understand the process that takes place after a stroke, when patients have to relearn how to do certain things. We want to find out if there are things we can do to speed up the recovery process," Zuo said.

The lead authors of the Nature paper, Tonghui Xu and Xinzhu Yu, are a postdoctoral researcher and doctoral student, respectively, in Zuo's lab at UCSC. Coauthors include Andrew Perlik, Willie Tobin, and Jonathan Zweig of UCSC and Kelly Tennant and Theresa Jones of the University of Texas, Austin.

The study used mice that had been genetically altered to make a fluorescent protein within certain neurons in the brain. The researchers were then able to use a special microscopy technique (two-photon microscopy) to obtain clear images of those neurons near the surface of the brain. The noninvasive imaging technique enabled them to view changes in individual brain cells of the mice before, during, and after the mice were trained in the seed-reaching task.

"We were able to follow the same synapses over time, which had not been done before in a motor learning study," Zuo said. "We showed that structural changes occur in the brain at a much earlier stage than people had believed."

Results from the study suggested that the newly formed dendritic spines are initially unstable and undergo a prolonged selection process during the course of training before being converted into stable synapses.

When previously trained mice were reintroduced to the reaching task four months later, their skill at the task remained high, and images of their brains did not show increased spine formation. When previously trained mice were taught a new skill, however, they showed enhanced spine formation and elimination similar to that seen during the initial training. Furthermore, spines that had formed during the initial training persisted after the remodeling process that accompanied the learning of a new task.

These findings suggest that different motor behaviors are stored using different sets of synapses in the brain, Zuo said. One of the questions she would like to explore in future studies is how these findings apply to different types of learning.

"In China, where I grew up, we memorize a lot in school. What are the changes that take place in the brain during learning and memorizing, and what are the best ways to consolidate those memories? We don't really know the best way to learn and memorize," she said.

This work was supported by grants from the Ellison Medical Foundation, the DANA Foundation, and the National Institute on Aging.


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "New brain connections form rapidly during motor learning." ScienceDaily. ScienceDaily, 30 November 2009. <www.sciencedaily.com/releases/2009/11/091129153359.htm>.
University of California - Santa Cruz. (2009, November 30). New brain connections form rapidly during motor learning. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/11/091129153359.htm
University of California - Santa Cruz. "New brain connections form rapidly during motor learning." ScienceDaily. www.sciencedaily.com/releases/2009/11/091129153359.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins