Featured Research

from universities, journals, and other organizations

Innovation puts next-generation solar cells on the horizon

Date:
December 2, 2009
Source:
Monash University
Summary:
Scientists have developed an innovative way to boost the output of the next generation of solar cells. They have produced tandem dye-sensitized solar cells with a three-fold increase in energy conversion efficiency compared with previously reported tandem dye-sensitized solar cells.

Scientists have developed an innovative way to boost the output of the next generation of solar cells.
Credit: iStockphoto/Tamara Kulikova

In a world first, a Monash University-led international research team has developed an innovative way to boost the output of the next generation of solar cells.

Scientists at Monash University, in collaboration with colleagues from the universities of Wollongong and Ulm in Germany, have produced tandem dye-sensitised solar cells with a three-fold increase in energy conversion efficiency compared with previously reported tandem dye-sensitised solar cells.

Lead researcher Dr Udo Bach, from Monash University, said the breakthrough had the potential to increase the energy generation performance of the cells and make them a viable and competitive alternative to traditional silicon solar cells.

Dr Bach said the key was the discovery of a new, more efficient type of dye that made the operation of inverse dye-sensitised solar cells much more efficient.

When the research team combined two types of dye-sensitised solar cell -- one inverse and the other classic -- into a simple stack, they were able to produce for the first time a tandem solar cell that exceeded the efficiency of its individual components.

"The tandem approach -- stacking many solar cells together -- has been successfully used in conventional photovoltaic devices to maximise energy generation, but there have been obstacles in doing this with dye-sensitised cells because there has not been a method for creating an inverse system that would allow dye molecules to efficiently pass on positive charges to a semiconductor when illuminated with light," Dr Bach said.

"Inverse dye-sensitised solar cells are the key to producing dye-sensitised tandem solar cells, but the challenge has been to find a way to make them perform more effectively. By creating a way of making inverse dye-sensitised solar cells operate very efficiently we have opened the way for dye-sensitised tandem solar cells to become a commercial reality."

Although dye-sensitised solar cells have been the focus of research for a number of years because they can be fabricated with relative simplicity and cost-efficiency, their effectiveness has not been on par with high-performance silicon solar cells.

Dr Bach said the breakthrough, which is detailed in a paper published in Nature Materials, was an important milestone in the ongoing development of viable and efficient solar cell technology.

"While this new tandem technology is still in its early infancy, it represents an important first step towards the development of the next generation of solar cells that can be produced at low cost and with energy efficient production methods," he said.

"With this innovation we are one step closer to the creation of a cost-efficient and carbon-neutral energy source."


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Cite This Page:

Monash University. "Innovation puts next-generation solar cells on the horizon." ScienceDaily. ScienceDaily, 2 December 2009. <www.sciencedaily.com/releases/2009/12/091201100553.htm>.
Monash University. (2009, December 2). Innovation puts next-generation solar cells on the horizon. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/12/091201100553.htm
Monash University. "Innovation puts next-generation solar cells on the horizon." ScienceDaily. www.sciencedaily.com/releases/2009/12/091201100553.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins