Featured Research

from universities, journals, and other organizations

Stick and slide: Computer simulation advances understanding of molecular motors

Date:
December 3, 2009
Source:
Cell Press
Summary:
A new study reveals how molecular motors that power important subcellular movements can generate cyclical motion. The research opens a new door to understanding motor molecules by using a computer program that faithfully simulates movement of hair-like cellular projections.

A new study reveals how molecular motors that power important subcellular movements can generate cyclical motion. The research, published by Cell Press in the December issue of the Biophysical Journal, opens a new door to understanding motor molecules by using a computer program that faithfully simulates movement of hair-like cellular projections.

Many cells and single-celled organisms have tiny appendages called cilia and flagella that can wave or oscillate to move fluid across the cell surface or propel the cell forward. Each flagellum (or cilium) has nine pairs of fused microtubules, called outer doublets, arranged in a cylinder. Thousands of motor protein molecules, called dyneins, are arranged along each doublet. Each dynein motor attaches and detaches to the neighboring doublet, causing a sliding motion between the doublets, which causes oscillatory bending of the flagellum.

"We do not understand how the action of these motors is coordinated to produce useful bending patterns. In particular, the fundamental mechanism that generates oscillation has not been established," says study author Dr. Charles J. Brokaw from the Division of Biology at the California Institute of Technology. "The theories that have been proposed are difficult to test because of the complex structure of flagella."

Earlier studies in the laboratory of Dr. Ritsu Kamiya at the University of Tokyo used partially disintegrated flagella from green algae and provided the first clear mechanism of a dynein-driven oscillation. Specifically, dyneins generated sliding forces that caused a lone pair of doublets to split apart near their bottom ends, which were still firmly attached together. Further sliding enlarged the separation and caused it to extend to the full length of the doublet pair, until it was completely dissociated. The doublets then reassociated, starting at their basal ends, until the dyneins were able to reinitiate sliding and repeat the cycle.

To fully exploit this simplified model system, Dr. Brokaw developed a computer program that could compute the movement of a doublet pair resulting from realistic dynein forces. The simulation confirmed what was inferred from the earlier study, that dynein-driven sliding is turned off when the separation between the doublets becomes too large, and is turned on again when the doublets reassociate.

"Perhaps more importantly, the new simulation demonstrated that dyneins must produce an adhesive force that keeps the doublets close together to produce sliding forces," explains Dr. Brokaw. "This first step will lead to programs in which ideas about the detailed chemical kinetics and structural mechanics of individual dyneins can be tested as the source of the sliding and adhesive forces."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Stick and slide: Computer simulation advances understanding of molecular motors." ScienceDaily. ScienceDaily, 3 December 2009. <www.sciencedaily.com/releases/2009/12/091202122039.htm>.
Cell Press. (2009, December 3). Stick and slide: Computer simulation advances understanding of molecular motors. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2009/12/091202122039.htm
Cell Press. "Stick and slide: Computer simulation advances understanding of molecular motors." ScienceDaily. www.sciencedaily.com/releases/2009/12/091202122039.htm (accessed September 21, 2014).

Share This



More Computers & Math News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
Oculus Reveals New Virtual Reality Headset Prototype

Oculus Reveals New Virtual Reality Headset Prototype

Newsy (Sep. 20, 2014) Oculus announced a new virtual reality headset prototype Saturday, saying the product is close to being ready for consumers. Video provided by Newsy
Powered by NewsLook.com
How To Protect Your Data In The Still-Vulnerable iOS 8

How To Protect Your Data In The Still-Vulnerable iOS 8

Newsy (Sep. 20, 2014) One security researcher says despite Apple's efforts to increase security in iOS 8, it's still vulnerable to law enforcement data-transfer techniques. Video provided by Newsy
Powered by NewsLook.com
How Much Privacy Protection Will Google's Android L Provide?

How Much Privacy Protection Will Google's Android L Provide?

Newsy (Sep. 19, 2014) Google's local encryption will make it harder for law enforcement or malicious actors to access the contents of devices running Android L. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins