Featured Research

from universities, journals, and other organizations

New approach to sickle-cell disease shows promise in mice

Date:
December 9, 2009
Source:
Children's Hospital Boston
Summary:
Researchers report being able to get mice with sickle-cell disease to start producing fetal hemoglobin again -- potentially compensating for damaged adult hemoglobin and making symptoms of sickle-cell disease much milder.

A new genetic approach to treating sickle cell disease is showing promising results in mice, report researchers from Children's Hospital Boston. By inactivating a gene they previously discovered to be important in the laboratory, they were able to boost production of a healthy fetal form of hemoglobin in the mice, potentially compensating for the defective adult hemoglobin that causes red blood cells to "sickle" and obstruct blood flow.

The study was presented by first author Jian Xu, PhD, on Sunday, December 6, at the American Society for Hematology meeting in New Orleans, at a 3 p.m. Plenary Scientific Session.

Currently, there are only a limited number of therapies available for patients with sickle cell disease, the most common inherited blood disorder in the U.S., says senior study author Stuart H. Orkin, MD, of Children's Division of Hematology/Oncology, also David G. Nathan Professor of Pediatrics at Harvard Medical School.

Shortly after birth, babies switch from producing the fetal form of hemoglobin, the protein inside red blood cells that carries oxygen, to producing the adult form -- the type that is affected in sickle cell disease. It's long been known that people who retain the ability to produce fetal hemoglobin have much milder disease. In previous studies, the Children's researchers, with collaborators, found that a gene called BCL11A is involved in switching off fetal hemoglobin production in adults. Working with genetically engineered mice, they then explored whether that switch could be turned back on to alleviate the disease.

In embryonic mice, inactivation of the BCL11A gene led to a robust expression of gamma-globin (the long protein chains making up the fetal form of hemoglobin) during late gestation: more than 90 percent of the globin produced was of this fetal type. In adult mice (8-10 weeks old), inactivation of the BCL11A gene in the blood system resulted in more than a 1,000-fold increase in gamma-globin production in bone marrow erythroblasts (the precursors to red blood cells) as compared with control mice. This increase was rapid and persisted during the course of the experiments (up until the mice were 25 weeks old).

This line of research began with comprehensive gene association studies, published in 2008 with collaborators at the Broad Institute of Harvard and MIT. These studies, involving 1600 patients with sickle cell disease, identified five DNA sequence variants (altered strings of genetic code) that correlated with fetal hemoglobin levels. BCL11A, on chromosome 2, had the largest effect, and Orkin and Vijay Sankaran, an MD-PhD student working with Orkin, later demonstrated that this gene directly suppresses fetal hemoglobin production.

If these preliminary results in mice hold up in human studies, inactivating BCL11A may also help patients with thalassemia, another blood disorder involving abnormal hemoglobin, adds Orkin.

This study was funded by grants from the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "New approach to sickle-cell disease shows promise in mice." ScienceDaily. ScienceDaily, 9 December 2009. <www.sciencedaily.com/releases/2009/12/091207151340.htm>.
Children's Hospital Boston. (2009, December 9). New approach to sickle-cell disease shows promise in mice. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/12/091207151340.htm
Children's Hospital Boston. "New approach to sickle-cell disease shows promise in mice." ScienceDaily. www.sciencedaily.com/releases/2009/12/091207151340.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com
Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins