Featured Research

from universities, journals, and other organizations

Novel detection method unmasks circulating breast cancer cells

Date:
December 14, 2009
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Circulating metastatic breast cancer cells can lose their epithelial receptors, a process that enables them to travel through the bloodstream undetected, according to new research.

Circulating metastatic breast cancer cells can lose their epithelial receptors, a process that enables them to travel through the bloodstream undetected, according to research from The University of Texas M. D. Anderson Cancer Center.

The findings were presented December 11 at the CTRC-AACR San Antonio Breast Cancer Symposium.

Levels of these circulating tumor cells (CTCs) -- which are shed from a primary tumor or its metastases -- have been used to monitor and tailor cancer therapy and to predict a patient's prognosis. CTCs that have undergone epithelial-mesenchymal transition (EMT), however, evade current detection methods and lose their traditional prognostic and therapeutic value. Those cancer cells also become more resistant to chemotherapy and radiation therapy. Finding a reliable method to detect these stealth breast cancer cells may reveal additional therapeutic targets that could help eradicate micrometastatic disease in patients with breast cancer or other epithelial tumors.

EMT and the Invasion-Metastasis Cascade

EMT is a process in which cancer cells undergo transdifferentiation (transformation into a different type of cell). "The carcinoma cells activate a transdifferentiation program in order to acquire the ability to execute the multiple steps necessary for the invasion-metastasis cascade," said the study's first author Michal Mego, M.D., Ph.D., formerly a fellow at M. D. Anderson. "During EMT, epithelial cells acquire a mesenchymal appearance with increased motility and invasiveness."

The researchers hypothesized that these changes render the EMT-CTCs undetectable by current detection assays, such as CellSearch (Veridex). The cells' acquired resistance to chemotherapy and radiotherapy also suggested that EMT-CTCs are tumor-initiating cells and are responsible for tumor dissemination. Moreover, the researchers had found subgroups of high-risk patients with brain metastases, triple receptor-negative disease, or inflammatory breast cancer whose blood tests did not reveal elevated levels of CTCs, further supporting their hypothesis.

Detecting CTCs Through EMT Gene Expression

The researchers then set out to develop a detection method that could identify EMT-CTCs in the peripheral blood of breast cancer patients. They took approximately 5 mL of peripheral blood from 27 patients ranging in age from 34 -- 72 years, with a median age of 54. Sixteen of the women had metastatic disease, 19 had inflammatory breast cancer, and 12 had primary, non-inflammatory breast cancer.

"Using magnetic beads coated with monoclonal antibodies capable of capturing the majority of hematopoietic cells in peripheral blood, we obtained a fraction of cells enriched for CTCs," said Mego, who is now a scientist at the National Cancer Institute in the Slovak Republic. "Next we isolated RNA from these cells to detect genes that are involved in epithelial-mesenchymal transition, using molecular biology technology, such as the polymerase chain reaction."

Five EMT genes were identified: TWIST1, SNAIL1, SLUG, ZEB1, and FOXC2. At least one of these genes was over-expressed in 21 percent of the patients. Over-expression of EMT genes was more common among women with triple receptor-negative breast cancer than among those without this high-risk signature. The researchers found no correlation between EMT gene expression and CTC count as measured by CellSearch or the carcinoma-associated antigen known as Ep-CAM (epithelial cell adhesion molecule).

"We found that current CTC detection methods underestimate the most important subpopulation of CTCs involved in tumor dissemination-those with tumor-initiating properties," said James Reuben, Ph.D., professor in M. D. Anderson's Department of Hematopathology, the study's senior author. "A novel detection method such as ours that is capable of detecting CTCs after EMT could add important new prognostic information and could be useful for monitoring treatment efficacy in real time."

In addition to Mego and Reuben, other authors on the M. D. Anderson study include: Massimo Cristofanilli, M.D., Eleni Andreopoulou, M.D., and Summer Jackson, all of the Department of Breast Medical Oncology; Hui Gao, Ph.D. Changping Li, M.D., Sanda Tin, M.D. and Evan Cohen, all of the Department of Hematopathology; and Sendurai Mani, Ph.D., Department of Molecular Pathology.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Novel detection method unmasks circulating breast cancer cells." ScienceDaily. ScienceDaily, 14 December 2009. <www.sciencedaily.com/releases/2009/12/091211200339.htm>.
University of Texas M. D. Anderson Cancer Center. (2009, December 14). Novel detection method unmasks circulating breast cancer cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/12/091211200339.htm
University of Texas M. D. Anderson Cancer Center. "Novel detection method unmasks circulating breast cancer cells." ScienceDaily. www.sciencedaily.com/releases/2009/12/091211200339.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins