Featured Research

from universities, journals, and other organizations

Certain genes boost chances for distributing variety of traits, drive evolution

Date:
December 26, 2009
Source:
Johns Hopkins Medical Institutions
Summary:
Genes that don't themselves directly affect the inherited characteristics of an organism but leave them increasingly open to variation may be a significant driving force of evolution, say scientists.

Genes that don't themselves directly affect the inherited characteristics of an organism but leave them increasingly open to variation may be a significant driving force of evolution, say two Johns Hopkins scientists.

Their proposed amended view of evolution is based on observations of genetic patterns outside of a cell's DNA and may better explain how organisms, including people, have adapted over hundreds of thousands of years to relatively rapidly changing environments.

This view, which also offers a new explanation for the genetic basis of some persistent, common human diseases, is published the week of Dec. 14 in the early online edition of the Proceedings of the National Academy of Sciences.

"We're proposing that certain gene variants contribute to heterogeneity in populations," says Johns Hopkins professor of medicine Andrew Feinberg, M.D., Ph.D. "In a fluctuating environment, this gives generations more opportunity to survive," he adds.

For more than 100 years, mainstream science has embraced the basic tenets of Darwin's view that characteristics that increase an organism's ability to survive and reproduce will be passed from generation to generation. Scientists later demonstrated that stable, significant traits are indeed inherited in the DNA carried in parental genes on chromosomes and randomly distributed to offspring.

Characteristics that affect an organism's ability to adapt and survive in times of environmental change have been thought to arise by chance through random mutations in an organism's DNA. However, this view could not explain how such mutations, which arise only rarely, help organisms of every size and variety adapt quickly enough through time. Nor could it explain how diseases that lead to a dramatic loss of survival -- such as diabetes, heart disease, autism, and schizophrenia -- persist in populations. Indeed, genes that directly contribute to these conditions have been difficult to find.

Feinberg says some scientists have sought to explain gaps in Darwinian theory with epigenetics, the study of changes to genes that don't directly affect the DNA sequence, but do affect which genes are turned on or off and therefore which proteins are produced in cells. Research has shown that environmental conditions, such as diet, sunlight, or viral infections, can bring about epigenetic changes. However, it is unclear whether these changes persist through several generations in a variable environment.

In a new twist on both of these ideas, Feinberg and Johns Hopkins Bloomberg School of Public Health professor of biostatistics Rafael Irizarry, Ph.D., suggest that gene variants or alleles able to take on the challenge and increase random distribution of characteristics might drive the development of the wide variety of traits -- from height to skin tone to disease risk -- seen in modern populations.

The scientists developed this idea through a series of experiments examining epigenetic patterns in groups of mice littermates that were very similar genetically. From before birth to adulthood, the mice were exposed to the same conditions, living in the same cage and eating the same food. The researchers then examined the animals' livers and brains for methylation, a chemical addition to DNA that is one type of epigenetic change.

Though Feinberg and Irizarry expected to see similar methylation patterns due to the rodents' identical upbringing, they found regions in the animal's genetic makeup with strikingly different patterns. Moreover, these regions occurred among genes responsible for determining anatomy during early development.

Using samples of human liver, the researchers found that these "variably methylated regions" were the same, suggesting that these genes are affected similarly by epigenetics from species to species.

In another experiment, Feinberg and Irizarry performed a computer simulation in which they calculated the likelihood of a model organism becoming extinct over 1000 generations. This organism had a trait, Y, which affected survival. In some simulations, the researchers allowed Y to behave variably, leading some generations to have more surviving members than others. When the environment in the simulation was static, having a variable Y was a detriment. However, when the environment changed on a periodic basis, generations with a variable Y created organisms with a wider range of characteristics that were more likely to survive in the long run and not become extinct.

The researchers suggest in the study that the presence of genes that contribute to trait variability might help explain the presence of common diseases. Much as having a variable Y aided the model organism in their simulation in the long run but were detrimental in a static environment, variability in traits such as the ability to control blood sugar could have helped human ancestors survive to the present but become detrimental in the current environment.

"In the long run, it might be a good thing to have a large spread of people who handle blood sugar differently. However, in today's environment, people with a propensity to develop high blood sugar are at a disadvantage," explains Feinberg.

Feinberg and Irizarry suggest that though it's unclear how these variability genes acquire such inconsistent epigenetic changes, one mechanism may be environmental influence.

"The interaction between nature and nurture may be simpler than we've imagined," Irizarry says.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Certain genes boost chances for distributing variety of traits, drive evolution." ScienceDaily. ScienceDaily, 26 December 2009. <www.sciencedaily.com/releases/2009/12/091214151937.htm>.
Johns Hopkins Medical Institutions. (2009, December 26). Certain genes boost chances for distributing variety of traits, drive evolution. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/12/091214151937.htm
Johns Hopkins Medical Institutions. "Certain genes boost chances for distributing variety of traits, drive evolution." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214151937.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins